纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 34-40.doi: 10.13475/j.fzxb.20220601107

• 特约专栏:纺织智能制造与机器人 • 上一篇    下一篇

基于增强现实技术的筒子纱印染锁扣机器人运维巡检系统研究

吴乐1,2, 张倩1,2(), 杨万然1,2, 徐朝月1,2, 王维冠1,2, 侯曦3   

  1. 1.北京机科国创轻量化科学研究院有限公司, 北京 100083
    2.先进成形技术与装备国家重点实验室, 北京 100083
    3.中国纺织机械协会, 北京 100028
  • 收稿日期:2022-06-06 修回日期:2022-07-20 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 张倩
  • 作者简介:吴乐(1992—),女,工程师。主要研究方向为装备制造数字化及智能化。
  • 基金资助:
    山东省重大科技创新项目(2019TSLH0204)

Research on operation-maintenance-patrol-inspection system of yarn package dyeing latch locking robot based on augmented reality technology

WU Le1,2, ZHANG Qian1,2(), YANG Wanran1,2, XU Zhaoyue1,2, WANG Weiguan1,2, HOU Xi3   

  1. 1. Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China
    2. State Key Laboratory of Advanced Forming Technology and Equipment, Beijing 100083, China
    3. China Textile Machinery Association, Beijing 100028, China
  • Received:2022-06-06 Revised:2022-07-20 Published:2022-09-15 Online:2022-09-26
  • Contact: ZHANG Qian

摘要:

为达到筒子纱印染生产过程中对关键机器人设备可靠性、稳定性和低运维成本的要求,以筒子纱染色锁扣机器人为研究对象,通过分析锁扣机器人作业流程、巡检需求及常见故障,开展其智能巡检作业流程分析、系统方案及功能模块设计、数据接口设计等研究,建立锁扣机器人运维巡检数据模型,搭建基于增强现实技术的锁扣机器人运维巡检系统,实现锁扣机器人的设备实时数据监控、故障监测预警、设备综合效率分析及设备智能运维巡检,并进行现场应用验证。结果表明:锁扣机器人提高了设备运行可靠性及维护便捷性,实现了设备运维安全管控。

关键词: 增强现实技术, 锁扣机器人, 数据模型, 智能运维巡检, 实时监测, 筒子纱染色

Abstract:

According to the requirements for high reliability, stability and low operation and maintenance cost of the key robot in the yarn package dyeing process, this research took the yarn package dyeing latch locking robot as the research object and analysed intelligent inspection workflow, design system schemes and functional modules, design data interface by analyzing the operation process, inspection requirements and common faults of the latch locking robot. This research built a data model for operation-maintenance-patrol-inspection of latch locking robots and a system based on augmented reality technology, realizing the real-time data monitoring, fault monitoring and early warning, comprehensive efficiency analysis and intelligent operation-maintenance-patrol-inspection of the robot. The on-spot application showed that the reliability and the safety control of equipment operation and the convenience of maintenance were improved.

Key words: augmented reality technology, latch locking robot, data model, operation-maintenance-patrol-inspection, real-time monitoring, yarn package dyeing

中图分类号: 

  • TP391.9

图1

锁扣机器人"

图2

智能巡检作业流程"

图3

智能运维系统研究框架"

图4

锁扣机器人智能巡检系统数据模型"

表1

数据类别及来源"

类型 数据
类别
实时
数据
数据
来源
实时
信息
任务状态 任务号、纱笼号、任务进度、操作类别、颜色类别、纱笼杆号、托盘杆号、缓存层数、缓存数量 PLC
设备状态 单机/联机、手动/自动、空闲/工作、正常/报警
关键零部
件状态
手抓气缸、升降气缸、扶正气缸
运行
参数
轴当前
速度
X轴、Y轴、Z轴、纱笼移载车W轴、缓存架升降轴 PLC/
传感器
轴当前
坐标
X轴、Y轴、Z轴、纱笼移载车W轴、缓存架升降轴
轴限位预
警状态
X轴、Y轴、Z轴、纱笼移载车W
电机报
警状态
X轴、Y轴、Z轴、纱笼移载车W
故障
记录
联轴器故
障记录
X轴、Y轴、Z轴 PLC/
数据库
滑块故
障记录
X轴、Y轴、Z轴

图5

数据通信架构"

图6

锁扣机器人巡检系统组成"

图7

巡检场景设计"

图8

巡检场景选择"

图9

系统测试场景"

图10

系统部分界面设计"

[1] 娄岩. 虚拟现实与增强现实技术概论[M]. 北京: 清华大学出版社, 2016:160-184.
LOU Yan. Introduction to virtual reality and augmented reality technology[M]. Beijing: Tsinghua University Press, 2016:160-184.
[2] 张桢. 增强现实技术和产业发展现状及趋势展望[J]. 新材料产业, 2021(3): 41-44.
ZHANG Zhen. Current situation and trend of augmented reality technology and industry development[J]. Advanced Materials Indystry, 2021(3): 41-44.
[3] HE Changyu, SONG Xifa, RAO Ying, et al. An AR operation and maintenance system for data center[C]// Proceedings of 2018 International Conference on Computer Science and Software Engineering (CSSE 2018).Chengdu:International Association of Applied Science and Engineering (IAASE), 2018:175-187.
[4] SORIA G, ORTEGA A L M, FEITO F R. Augmented and virtual reality for underground facilities manage-ment[J]. Journal of Computing and Information Science in Engineering, 2018, 18(4):1-9.
[5] 何智频, 傅建钢, 赵能, 等. 基于AR技术的电力设备智能巡检探讨[J]. 数字通信世界, 2020(11): 88-89.
HE Zhipin, FU Jiangang, ZHAO Neng, et al. Discussion on intelligent inspection of power equipment based on AR technology[J]. Digital Communication World, 2020(11): 88-89.
[6] 李大勇, 杨畅, 张永伍, 等. 基于AR技术的变电站智能巡检系统设计与实现[J]. 微型电脑应用, 2020, 36(8): 92-94,121.
LI Dayong, YANG Chang, ZHANG Yongwu, et al. Application of remote assistance system for intelligent inspection of substation based on the AR technology[J]. Microcomputer Applications, 2020, 36(8): 92-94,121.
[7] 何明, 陈莹莹, 张斌, 等. AR技术在配电站房巡检业务中的应用研究[J]. 现代信息科技, 2019, 3(1):175-176.
HE Ming, CHEN Yingying, ZHANG Bin, et al. Application of AR technology in patrol service of distribution station buildings[J]. Modern Information Technology, 2019, 3(1): 175-176.
[8] 程新求, 张伟. 基于AR技术在燃气行业中巡检检修应用研究[C]// 2019年燃气安全交流研讨会. 北京: 中国城市燃气协会, 2019:213-214.
CHENG Xinqiu, ZHANG Wei. Research on application of AR technology in inspection and maintenance in gas industry[C]// 2019 Gas Safety Exchange Seminar. Beijing: China City Gas Association, 2019:213-214.
[9] 王琮皓. BIM+AR技术在建筑运维管理中的应用研究[D]. 开封: 河南大学, 2019: 15-62.
WANG Zonghao. The application research of BIM+AR technology in construction operation and maintenance management[D]. Kaifeng: Henan University, 2019:15-62.
[10] 杜冠军, 潘海囤, 王鹏展, 等. 基于AR的通信机房运维巡检技术[J]. 中国科技信息, 2020(22):66-67.
DU Guanjun, PAN Haitun, WANG Pengzhan, et al. AR based operation and maintenance inspection technology of communication machine room[J]. China Science and Technology Information, 2020(22):66-67.
[11] 李冰. 数据中心AR智能运维管理系统的设计与实现[J]. 信息系统工程, 2019(10):125-126.
LI Bing. Design and implementation of AR intelligent operation and maintenance management system in data cente[J]. China CIO News, 2019(10):125-126.
[12] 方维岚, 吴奕龙, 陈翀. 基于AR/MR技术的智能穿戴设备在工业巡检中的应用[J]. 数字技术与应用, 2021, 39(7):150-152.
FANG Weilan, WU Yilong, CHEN Chong. Application of intelligent wearable devices based on AR/MR technology in industrial inspection[J]. Digital Technology and Application, 2021, 39(7):150-152.
[1] 郑宝平, 蒋高明. 基于云服务器的经编机数据管理系统设计[J]. 纺织学报, 2022, 43(07): 186-192.
[2] 廉志军;潘菊芳;江渊;庄小雄. 筒子纱染色涤纶纤维表面杂质及对策[J]. 纺织学报, 2010, 31(6): 90-94.
[3] 江渊;潘菊芳;廉志军;徐憬. 涤纶纤维筒子染色过程中白色粉末性质的探讨[J]. 纺织学报, 2010, 31(5): 24-29.
[4] 唐蕾;单忠德;吴双峰;郭瑞峰;. 筒子纱染色粉状染料自动配送系统新进展[J]. 纺织学报, 2010, 31(12): 143-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!