纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 41-48.doi: 10.13475/j.fzxb.20220407908
LIU Feng1, XU Jie1,2(), KE Wenbo3
摘要:
服装缝制生产过程易受动态事件干扰,针对订单实时到达的动态事件,以最小化最大完工周期为目标,提出基于深度强化学习的服装缝制过程实时动态调度方法。首先,建立服装缝制过程的调度优化模型,并将该问题转化为基于马尔科夫决策过程的顺序决策问题。然后,通过定义状态特征、候选动作集、奖励函数、探索与利用策略等方面,并结合DDQN算法训练深度神经网络用以描述状态-动作值,据此在决策节点选择最合适的调度规则。实验结果表明:针对牛仔裤前片缝制过程,所提出的方法相较于遗传算法,在调度目标的达成度方面略逊2.3%,但决策时间大幅减少91.4%,表明针对订单动态到达的调度问题,该方法能够实现有效地实时响应,确保了缝制生产的高效性与连续性。
中图分类号:
[1] |
LI Xinyu, GAO Liang. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J]. International Journal of Production Economics, 2016, 174:93-110.
doi: 10.1016/j.ijpe.2016.01.016 |
[2] |
DAI Min, TANG Dunbing, GIRET A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5):418-429.
doi: 10.1016/j.rcim.2013.04.001 |
[3] | 郑立平, 郝忠孝. 遗传算法理论综述[J]. 计算机工程与应用, 2003(21): 50-53. |
ZHENG Liping, HAO Zhongxiao. Review of genetic algorithm theory[J]. Computer Engineering and Applications, 2003(21): 50-53. | |
[4] | 郑卫波, 周俊, 许正良. 基于遗传算法的服装企业计划调度建模与求解[J]. 江苏纺织, 2009(1):59-60. |
ZHENG Weibo, ZHOU Jun, XU Zhengliang. Modeling and solving of scheduling of garment enterprise based on genetic algorithm[J]. Jiangsu Textile, 2009(1):59-60. | |
[5] | 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10):144-149. |
XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10):144-149. | |
[6] |
NAWAZ Muhammad, ENSCORE Emory, HAM Inyong. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95.
doi: 10.1016/0305-0483(83)90088-9 |
[7] |
FRAMINAN J M, GUPTA J N, LEISTEN R. A review and classification of heuristics for permutation flow-shop scheduling with makespan objective[J]. Journal of the Operational Research Society, 2004, 55(12): 1243-1255.
doi: 10.1057/palgrave.jors.2601784 |
[8] | 贺俊杰, 张洁, 张朋, 等. 基于多智能体强化学习的纺织面料染色车间动态调度方法[J/OL]. 计算机集成制造系统:1-31[2022-04-20]. http://kns.cnki.net/kcms/detail/11.5946.tp.20210227.1731.002.html. |
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Multi-agent reinforcement learning based textile dyeing workshop dynamic scheduling method[J/OL]. Computer Integrated Manufacturing Systems:1-31[2022-04-20]. http://kns.cnki.net/kcms/detail/11.5946.tp.20210227.1731.002.html. | |
[9] |
LUO Shu. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing, 2020. DOI: 10.1016/j.asoc.2020.106208.
doi: 10.1016/j.asoc.2020.106208 |
[10] |
孔松涛, 刘池池, 史勇, 等. 深度强化学习在智能制造中的应用展望综述[J]. 计算机工程与应用, 2021, 57(2):49-59.
doi: 10.3778/j.issn.1002-8331.2008-0431 |
KONG Songtao, LIU Chichi, SHI Yong, et al. Review of application prospect of deep reinforcement learning in intelligent manufacturing[J]. Computer Engineering and Applications, 2021, 57(2):49-59.
doi: 10.3778/j.issn.1002-8331.2008-0431 |
|
[11] | SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. London: MIT press, 2018: 119-133. |
[12] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
doi: 10.1038/nature14236 |
[13] | HASSELT Hado Van, GUEZ Arthur, SILVER David. Deep reinforcement learning with double Q-learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100. |
[14] | 肖鹏飞, 张超勇, 孟磊磊, 等. 基于深度强化学习的非置换流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(1): 192-205. |
XIAO Pengfei, ZHANG Chaoyong, MENG Leilei, et al. Non-permutation flow shop scheduling problem based on deep reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(1):192-205. | |
[15] |
HAN Baoan, YANG Jianjun. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020, 8: 186474-186495.
doi: 10.1109/ACCESS.2020.3029868 |
[1] | 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10. |
[2] | 毛慧敏, 孙磊, 屠佳佳, 史伟民. 纱线自动接头机关键技术[J]. 纺织学报, 2022, 43(09): 21-26. |
[3] | 高晓飞, 齐立哲, 孙云权. 面向柔性面料立体缝纫的随形机械手设计[J]. 纺织学报, 2022, 43(09): 27-33. |
[4] | 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121. |
[5] | 杜劲松, 余雅芸, 赵妮, 谢子昂, 费中华, 潘静姝. 不同类型服装企业智能制造能力成熟度评价模型[J]. 纺织学报, 2021, 42(05): 162-167. |
[6] | 张旭靖, 王立川, 陈雁. 服装缝制生产物料的低碳配送路径优化[J]. 纺织学报, 2020, 41(03): 143-147. |
[7] | 汪松松, 彭来湖, 戴宁, 沈春娅, 胡旭东. 基于工业互联网的针织机械互联互通结构研究[J]. 纺织学报, 2020, 41(01): 165-173. |
[8] | 周亚勤, 汪俊亮, 鲍劲松, 张洁. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40(04): 145-151. |
[9] | 蒋高明 高哲 高梓越. 针织智能制造研究进展[J]. 纺织学报, 2017, 38(10): 178-183. |
[10] | 梅顺齐 胡贵攀 王建伟 陈振 徐巧. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166-171. |
[11] | 张洁 吕佑龙 汪俊亮 王海超 . 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38(10): 159-165. |
[12] | 胡旭东 沈春娅 彭来湖 汝欣. 针织装备的智能制造及互联互通标准验证[J]. 纺织学报, 2017, 38(10): 172-177. |
|