纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 58-63.doi: 10.13475/j.fzxb.20210801506

• 纤维材料 • 上一篇    下一篇

凝固浴对再生胶原纤维结构与性能的影响

杜璇1,2, 丁长坤1,2(), 岳程飞1,2, 苏杰梁1,2, 闫旭焕1,2, 程博闻3   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学天津市先进纤维与储能技术重点实验室, 天津 300387
    3.天津科技大学, 天津 300457
  • 收稿日期:2021-08-02 修回日期:2022-03-15 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 丁长坤
  • 作者简介:杜璇(1997—),女,硕士生。主要研究方向为生物质纤维材料。
  • 基金资助:
    天津市教委科研计划项目(2019ZD04);天津市自然科学基金青年项目(18JCQNJC72400)

Effect of coagulation bath on structure and properties of regenerated collagen fibers

DU Xuan1,2, DING Changkun1,2(), YUE Chengfei1,2, SU Jieliang1,2, YAN Xuhuan1,2, CHENG Bowen3   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, China
    3. Tianjin University of Science and Technology, Tianjin 300457, China
  • Received:2021-08-02 Revised:2022-03-15 Published:2022-09-15 Online:2022-09-26
  • Contact: DING Changkun

摘要:

为研究胶原(Col)纺丝液在不同凝固浴中的成形机制,分别以丙酮、氯化钠(NaCl)溶液、聚乙二醇(PEG)溶液、磷酸盐缓冲液(PBS)为凝固浴,采用干湿法纺丝技术制备再生胶原纤维,系统研究了凝固条件对纤维微纤结构和力学性能的影响。结果表明:胶原溶液在丙酮凝固浴中具有最快的脱水速度、聚集速度和凝固速度,丙酮-Col纤维的微纤较为细小,排列有序程度高且堆积紧密,断裂强度最高可达1.22 cN/dtex;NaCl溶液、PEG溶液、PBS缓冲液均通过脱除胶原表面的水化层使其析出,且PBS缓冲液因盐的浓度低导致其脱水速度很慢,但PBS-Col纤维的微纤尺寸较大且均一性强,排列较为紧密,强度次之;而NaCl-Col和PEG-Col纤维微纤尺寸亦较大但有一定间隙,排列较为疏松,微纤间相互作用力低,二者强度较低。

关键词: 胶原纤维, 凝固浴, 干湿法纺丝, 微纤, 断裂强度, 成形机制

Abstract:

To understand the forming mechanism of collagen(Col) dopes in different coagulation baths, regenerated collagen fibers were prepared via dry-wet spinning method using acetone, NaCl solution, polyvinyl alcohol(PEG) solution and phosphate buffer saline(PBS) solution as coagulation baths. The effects of coagulation conditions on the fibril structure and mechanical properties of collagen fibers were systematically studied. The results showed that collagen dopes demonstrated the fastest dehydration, aggregation and solidification rates in acetone coagulation bath, and acetone-Col fibers could achieve the tensile strength of up to 1.22 cN/dtex with highly ordered and tightly packed small fibrils. In addition, for NaCl solution, PEG solution and PBS solution, collagen fibers were all precipitated by removing the hydration layers on their surfaces, and PBS solution displayed a very slow dehydration rate because its salt concentration was low. However, the tensile strength of PBS-Col fibers was relatively high as well due to homogeneous tightly arranged fibrils with larger size. Furthermore, NaCl-Col fibers and PEG-Col fibers showed relatively lower tensile strength because of larger fibrils with more loosely package and bigger gaps, leading to lowered intermolecular interactions among fibrils.

Key words: collagen fiber, coagulation bath, dry-wet spinning, fibril, tensile strength, forming mechanism

中图分类号: 

  • TQ342.94

图1

丙酮-Col纤维的力学性能"

图2

NaCl-Col纤维的力学性能"

图3

PEG-Col纤维的力学性能"

图4

PBS-Col纤维的力学性能"

图5

再生胶原纤维SEM照片"

图6

再生胶原纤维XRD曲线"

图7

再生胶原纤维红外光谱图"

[1] FERREIRA A M, GENTILE P, CHIONO V, et al. Collagen for bone tissue regeneration[J]. Acta Biomaterialia, 2012, 8: 3191-3200.
doi: 10.1016/j.actbio.2012.06.014
[2] RICARD-BLUM S. The collagen family[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(1): 1-19.
[3] MICHAEL M. Processing of collagen based biomaterials and the resulting materials properties[J]. Biomed Central, 2019. DOI: 10.1186/s12938-019-0647-0.
doi: 10.1186/s12938-019-0647-0
[4] NORRIS W D, STEELE J G, JOHNSON G, et al. Serum enhancement of human endothelial cell attachment to and spreading on collagens I and IV does not require serum fibronectin or vitronectin[J]. Journal of Cell Science, 1990, 95(2): 255-262.
doi: 10.1242/jcs.95.2.255
[5] LIU H Y, LI D, GUO S D. Studies on collagen from the skin of channel catfish (ictalurus punctaus)[J]. Food Chemistry, 2007, 101(2): 621-625.
doi: 10.1016/j.foodchem.2006.01.059
[6] ZENG S K, ZHANG C H, LIN H, et al. Isolation and characterisation of acid-solubilised collagen from the skin of nile tilapia (oreochromis niloticus)[J]. Food Chemistry, 2009, 116(4): 879-883.
doi: 10.1016/j.foodchem.2009.03.038
[7] ZEUGOLIS D I, KHEW S T, YEW E S, et al. Electro-spinning of pure collagen nano-fibres-just an expensive way to make gelatin?[J]. Biomaterials, 2008, 29(15): 2293-2305.
doi: 10.1016/j.biomaterials.2008.02.009
[8] TRONCI G, KANUPARTI R S, ARAFAT M T, et al. Wet-spinnability and crosslinked fiber properties of two collagen polypeptides with varied molecular weight[J]. International Journal of Biological Macromolecules, 2015, 81: 112-120.
doi: 10.1016/j.ijbiomac.2015.07.053
[9] SIRIWARDANE M L, DEROSA K, COLLINS G, et al. Controlled formation of cross-linked collagen fibers for neural tissue engineering applications[J]. Biofabrication, 2014, 6(1): 1-3.
[10] AHN H, GONG D J, LEE H H, et al. Mechanical properties of porcine and fish skin-based collagen and conjugated collagen fibers[J]. Polymers, 2021. DOI: 10.3390/polym13132151.
doi: 10.3390/polym13132151
[11] 林云周, 高波, 陈武勇, 等. 皮胶原蛋白/PVA复合纤维的研制:提高初生纤维中蛋白质含量的研究[J]. 中国皮革, 2006, 4(11): 19-22.
LIN Yunzhou, GAO Bo, CHEN Wuyong, et al. Preparation of collagen/PVA composite fiber enhancing content of protein in the fiber[J]. China Leather, 2006, 4(11): 19-22.
[12] 闵雯, 张丽平. 凝固浴对胶原蛋白/壳聚糖复合纤维的影响[J]. 纺织导报, 2012 (12): 53-54.
MIN Wen, ZHANG Liping. Effect of coagulation bath on collagen/chitosan blended fiber[J]. China Textile Leader, 2012 (12): 53-54.
[13] ZEUGOLIS D I, PAUL R G, ATTENBURROW G. Engineering extruded collagen fibers for biomedical applications[J]. Journal of Applied Polymer Science, 2008, 108(5): 2886-2894.
doi: 10.1002/app.27208
[14] WANG M C, PINS G D, SILVER F H. Collagen fibres with improved strength for the repair of soft tissue injuries[J]. Biomaterials, 1994, 15(7): 507-512.
doi: 10.1016/0142-9612(94)90016-7
[15] YAARI A, SCHILT Y, TAMBURU C, et al. Wet spinning and drawing of human recombinant collagen[J]. ACS Biomaterials Science and Engineering, 2016, 2(3): 349-360.
doi: 10.1021/acsbiomaterials.5b00461
[16] 岳程飞, 丁长坤, 李璐, 等. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(3): 1-7.
YUE Chengfei, DING Changkun, LI Lu, et al. Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers[J]. Journal of Textile Research, 2020, 41(3): 1-7.
doi: 10.1177/004051757104100101
[17] 鲁吉珂, 黎业娟, 吴霄玥, 等. 有机溶剂沉淀法提取乳酸链球菌素的效果[J]. 食品科学, 2012, 33(10): 84-86.
LU Jike, LI Yejuan, WU Xiaoyue, et al. Separation of nisin from fermentation broth concentrate by organic solvent precipitation[J]. Food Science, 2012, 33(10): 84-86.
doi: 10.1111/j.1365-2621.1968.tb00889.x
[18] 程海明, 陈敏, 李志强. 胶原及皮革等电点的表征方法综述[J]. 皮革科学与工程, 2012, 22(4): 20-24.
CHENG Haiming, CHEN Min, LI Zhiqiang. Review of the determination methods of the isoelectric point of collagen and leather[J]. Leather Science and Engineering, 2012, 22(4): 20-24.
[19] 曹琴, 舒飞翼, 汪海波, 等. 湿法纺丝制备胶原纤维丝及紫外辐照对其性能的调控[J]. 武汉轻工大学学报, 2021, 40(1): 54-60.
CAO Qin, SHU Feiyi, WANG Haibo, et al. Preparation of collagen fiber by wet spinning and regulation effect of its properties by ultraviolet irradiation[J]. Journal of Wuhan Polytechnic University, 2021, 40 (1): 54-60.
[20] 李倩, 丁长坤, 张静, 等. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(5): 8-13.
LI Qian, DING Changkun, ZHANG Jing, et al. Preparation and properties of collagen/high-molecular weight chitosan composite fibers[J]. Journal of Textile Research, 2018, 39(5): 8-13.
[21] 杜建华. I型胶原纤维的制备、改性及其性能研究[D]. 天津: 天津工业大学, 2019: 17-41.
DU Jianhua. Study on preparation, modification and properties of type I collagen fiber[D]. Tianjin: Tiangong University, 2019: 17-41.
[22] 陈静涛, 赵玉萍, 徐政, 等. 重组胶原蛋白与牛源I型胶原蛋白红外光谱研究[J]. 材料导报, 2008, 4(3): 119-121.
CHEN Jingtao, ZHAO Yuping, XU Zheng, et al. FT-IR spectrometric study of reconbinant collagen and borine tendon type I collagen[J]. Materials Reports, 2008, 4(3): 119-121.
[23] DOYLE B B, BENDIT E G, BLOUT E R. Infrared spectroscopy of collagen and collagen-like polypeptides[J]. Biopolymers, 1975, 14(5): 937-957.
doi: 10.1002/bip.1975.360140505
[24] 徐元媛, 张莹, 张雨萱, 等. 聚乙二醇中红外光谱研究[J]. 齐鲁石油化工, 2020, 48(3): 188-192.
XU Yuanyuan, ZHANG Ying, ZAHNG Yuxuan, et al. Infrared spectroscopy of polyethylene glycol[J]. Qilu Petrochemical Technology, 2020, 48(3): 188-192.
[1] 费建武, 吕明泽, 刘利伟, 王春红, 韩振邦. 基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能[J]. 纺织学报, 2022, 43(06): 37-43.
[2] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[3] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[4] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
[5] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[6] 李倩 丁长坤 张静 杜建华 程博闻. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(05): 8-13.
[7] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
[8] 梁必超 韩春艳 季轩 魏青 赵炯心 王建庆. 聚酯/聚酰胺共聚纤维的结构及其理化性能[J]. 纺织学报, 2016, 37(11): 1-7.
[9] 杜兆芳 张利玲 许云辉 董丹丹. 氧化竹浆纤维的丝素蛋白改性工艺研究[J]. 纺织学报, 2016, 37(08): 12-15.
[10] 田文 王晓 崔永珠 吕丽华 庞桂兵. 环氧氯丙烷交联海藻酸钠纤维的制备及其性能[J]. 纺织学报, 2015, 36(05): 18-22.
[11] 吕芳兵 张传杰 王潮霞 朱平. 棉织物的离子液体溶解法回收[J]. 纺织学报, 2015, 36(05): 23-28.
[12] 李晓俊 朱庆松 孙玉山. 两种离子液体溶剂干湿纺纤维素纤维的力学性能及孔结构研究[J]. 纺织学报, 2015, 36(02): 1-6.
[13] 杨菲 徐山青. 豆腐渣/淀粉复合膜的制备及其性能[J]. 纺织学报, 2014, 35(6): 30-0.
[14] 李龙 蒋芳. 山羊绒纤维高锰酸钾防缩工艺[J]. 纺织学报, 2013, 34(6): 79-82.
[15] 陆鑫 张姝 顾韵芬. 针织面料性能对服装边口缝制工艺的影响[J]. 纺织学报, 2012, 33(11): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!