纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 76-81.doi: 10.13475/j.fzxb.20210705406

• 纤维材料 • 上一篇    下一篇

基于随机算法的纤维材料过滤特性仿真分析

诸文旎1, 徐润楠1, 胡蝶飞1, 姚菊明2,3,4, MILITKY Jiri5, KREMENAKOVA Dana5, 祝国成1,3()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    3.浙江理工大学 浙江-捷克先进纤维材料联合实验室, 浙江 杭州 310018
    4.宁波大学 材料科学与化学工程学院, 浙江 宁波 315201
    5.利贝雷茨理工大学纺织工程学院, 捷克 利贝雷茨 46117
  • 收稿日期:2021-07-16 修回日期:2022-03-09 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 祝国成
  • 作者简介:诸文旎(1997—),女,硕士生。主要研究方向为空气过滤材料。
  • 基金资助:
    国家自然科学基金项目(51803182)

Simulation analysis of filtration characteristics of fiber materials based on random algorithm

ZHU Wenni1, XU Runnan1, HU Diefei1, YAO Juming2,3,4, MILITKY Jiri5, KREMENAKOVA Dana5, ZHU Guocheng1,3()   

  1. 1. College of Textiles Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315201, China
    5. Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, The Czech Republic
  • Received:2021-07-16 Revised:2022-03-09 Published:2022-09-15 Online:2022-09-26
  • Contact: ZHU Guocheng

摘要:

为分析纤维空气过滤材料的流场演变情况,综合过滤效率及颗粒流动轨迹,基于随机算法建立了纤维空气过滤材料的三维模型,并采用计算流体力学中的欧拉-拉格朗日离散相模型,在雷诺相似准则的基础上研究了微米纤维介质中的气固流动特性。结果表明:入口速度变化对流场压力与速度场分布有明显影响,随着入口速度增大,阻滞区域面积增加,流场空隙处更易形成高速流动与速度漩涡,同时流场整体速度差增大,压力损失与入口速度呈正相关;纤维模型对平均粒径为8~18 mm颗粒的过滤效率较为稳定,均在80.4%~84%,在入口速度为2 m/s工况下,过滤效率与粒径接近正比例关系。

关键词: 空气过滤, 数值模拟, 相似准则, 过滤特性, 离散相模型, 纤维材料

Abstract:

In order to understand flow field evolution of fiber-based air filter, a three-dimensional model, integrated filtration efficiency and particle flow path, was established based on the random algorithm fiber air filter material. The computational hydro dynamics following the Euler-Lagrange discrete phase model was studied in gas-solid flow characteristics based on the Reynolds similarity criterion in micron fiber medium. The results show that the change in inlet velocity has a significant effect on the flow field pressure and velocity field distribution. With the increase in inlet velocity, the blocked area increases, and high-speed flow and velocity vortices are more likely to be formed in the flow field voids, and the overall velocity difference increases at the same time. The pressure loss is positively correlated with the inlet velocity. The filtration efficiency of the fiber model is relatively stable for particles with average particle size of 8-18 mm, which is 80.4%-84%, and the relationship between filtration efficiency and particle size is close to direct proportion when the inlet velocity is 2 m/s.

Key words: air filter, numerical simulation, similarity criterion, filtration characteristic, discrete phase model, fiber material

中图分类号: 

  • TS151

图1

纤维集合体模型"

图2

网格划分"

图3

边界条件"

图4

不同入口速度下的流场速度分布"

图5

不同入口速度下的流场压力分布"

图6

纤维集合体压降"

图7

纤维集合体对不同粒径颗粒物的过滤效率"

图8

颗粒轨迹追踪图"

[1] HUTTEN I. Handbook of nonwoven filter media[M]. London: Butterworth-Heinemann, 2016: 53-58.
[2] 陈斌, 项深泽. 纤维过滤材料过滤气体机理及其应用[J]. 化学工程与装备, 2009, 31(10): 140-141.
CHEN Bin, XIANG Shenze. The air filtering mechanism and application of fiber filter material[J]. Chemical Engineering and Equipment, 2009, 31(10): 140-141.
[3] 覃小红, 王善元. 静电纺纳米纤维的过滤机理及性能[J]. 东华大学学报(自然科学版), 2007, 33(1): 52-56.
QIN Xiaohong, WANG Shanyuan. Filtration properties of electrospinning nanofibers[J]. Journal of Donghua Uuiversity(Natural Science), 2007, 33(1): 52-56.
[4] ICHITSUBO H, HASHIMOTO T, ALONSO M, et al. Penetration of ultrafine particles and ion clusters through wire screens[J]. Aerosol Science and Technology, 1996, 24: 119-127.
doi: 10.1080/02786829608965357
[5] THOMAS D, PENICOT P, CONTAL P, et al. Clogging of fibrous filters by solid aerosol particles experimental[J]. Chemical Engineering Science, 2001, 56(11): 3549-3561.
doi: 10.1016/S0009-2509(01)00041-0
[6] WANG J, CHEN D R, PUI D. Modeling of filtration efficiency of nanoparticles in standard filter media[J]. Journal of Nanoparticle Research, 2006, 9(1): 109-115.
doi: 10.1007/s11051-006-9155-9
[7] TAFRESHI H V, RAHMAN M, JAGANATHAN S, et al. Analytical expressions for predicting permeability of bimodal fibrous porous media[J]. Chemical Engineering Science, 2009, 64: 1154-1159.
doi: 10.1016/j.ces.2008.11.013
[8] HOSSEINI S, TAFRESHI H V. 3-D simulation of particle filtration in electrospun nanofibrous filters[J]. Powder Technology, 2010, 201: 153-160.
doi: 10.1016/j.powtec.2010.03.020
[9] SAMBAER W, ZATLOUKAL M, KIMMER D. 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process[J]. Chemical Engineering Science, 2011, 66(4): 613-623.
doi: 10.1016/j.ces.2010.10.035
[10] WANG H, ZHAO H, WANG K, et al. Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model[J]. Journal of Aerosol Science, 2013, 66: 164-178.
doi: 10.1016/j.jaerosci.2013.08.016
[11] QIAN F, HUANG N, LU J, et al. CFD-DEM simulation of the filtration performance for fibrous media based on the mimic structure[J]. Computers & Chemical Engineering, 2014, 71: 478-488.
doi: 10.1016/j.compchemeng.2014.09.018
[12] 杨俊杰. 相似理论与结构模型试验[M]. 武汉: 武汉理工大学出版社, 2005:9-35.
YANG Junjie. Similarity theory and structural model test[M]. Wuhan: Wuhan University of Technology Press, 2005: 9-35.
[13] 张春秀. 流体力学实验研究中的相似原理及应用[J]. 四川电力技术, 1996, 19(6): 13-18.
ZHANG Chunxiu. Similarity principle and its application in fluid mechanics experimental research[J]. Sichuan Electric Power Technology, 1996, 19(6): 13-18.
[14] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 63-65.
WANG Fujun. Computational fluid dynamics analysis: principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004: 63-65.
[1] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[2] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[3] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
[4] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[5] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[6] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[7] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
[8] 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9.
[9] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[10] 刘朝军, 刘俊杰, 丁伊可, 马少锋, 张秀琴, 张建青. 空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J]. 纺织学报, 2021, 42(05): 31-37.
[11] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[12] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[13] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[14] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[15] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!