纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 89-94.doi: 10.13475/j.fzxb.20210302706

• 纺织工程 • 上一篇    下一篇

基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真

吴帆1, 李勇2, 陈晓川1(), 汪军3, 徐敏俊1   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2021-03-08 修回日期:2022-05-26 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 陈晓川
  • 作者简介:吴帆(1996—),男,硕士生。主要研究方向为静力学与动力学建模与仿真。
  • 基金资助:
    国家自然科学基金项目(11762020)

Finite element modeling and simulation of cotton fiber assembly compression based on three-dimensional braided model

WU Fan1, LI Yong2, CHEN Xiaochuan1(), WANG Jun3, XU Minjun1   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. College of Mechanical and Electronic Engineering, Tarim University, Alar, Xinjiang 843300, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-03-08 Revised:2022-05-26 Published:2022-09-15 Online:2022-09-26
  • Contact: CHEN Xiaochuan

摘要:

为分析棉纤维集合体在压缩过程中纤维受力情况来提高棉花压缩打包的质量,结合三维编织复合材料的细观几何建模思想,将具有相同圆形截面的棉纤维束按照三维四向编织复合材料的纤维分布进行排列,构建新的棉纤维集合体模型。将该模型应用于棉纤维集合体压缩过程分析,研究了棉纤维集合体压应力与相对密度的变化关系及棉纤维应力变化情况,分析了回潮率对棉纤维集合体压应力的影响。结果表明:随回潮率的升高,棉纤维集合体应力呈现先降低后升高的趋势,当回潮率位于8.8%~12.3%之间时,棉纤维应力最小;仿真结果与试验结果相符,说明该棉纤维集合体模型具有合理性。

关键词: 棉纤维集合体, 有限元模型, 压缩, 回潮率, 应力, 棉花打包

Abstract:

In order to analyze the stress of cotton fiber assembly in compression and improve the quality of cotton bales, a new model for three-dimensional braided composites is established. In this model, cotton fiber bundles were assumed to have the same circular cross-section and arranged according to the three-cell structure of three-dimensional four-direction braided composites. The model was subjected to compression analysis assuming a cotton fiber assembly, and the relationship between compressive stress and relative density was analyzed with the variation of cotton fiber stress. In addition, the influence of moisture regain on the compressive stress of cotton fiber assembly was analyzed. The results show that the stress of cotton fiber assembly decreases first and then increases as the moisture regain is increased. When the moisture regain is between 8.8% and 12.3%, the stress of cotton fiber is the minimum. The finite element analysis results are consistent with the experimental results, demonstrating the validity of the model.

Key words: cotton fiber assembly, finite element model, compression, moisture regain, stress, cotton bales

中图分类号: 

  • TS101

图1

棉纤维集合体单胞几何结构模型"

图2

棉纤维集合体实体模型"

表1

回潮率为8.8%时棉纤维集合体的压缩模量"

相对密度 压缩模量/MPa 相对密度 压缩模量/MPa
0.043 0.003 5 0.068 0.034 8
0.046 0.004 6 0.074 0.053 2
0.048 0.006 1 0.082 0.088 4
0.051 0.008 3 0.091 0.148 2
0.055 0.011 3 0.103 0.263 8
0.059 0.016 3 0.117 0.506 0
0.063 0.023 5 0.121 0.613 9

图3

棉纤维集合体有限元模型"

图4

回潮率为8.8%时棉纤维集合体压缩过程应力云图"

图5

压应力与压缩率及相对密度关系曲线"

表2

棉纤维集合体压应力有限元分析值与试验值对比"

压缩
率/%
相对
密度
压应力/MPa 相对
误差/%
有限元分析值 压缩试验值
35 0.063 0.000 60 0
40 0.068 0.001 09 0.000 51 113.7
45 0.074 0.001 94 0.001 53 26.8
50 0.082 0.004 25 0.004 59 7.4
55 0.091 0.009 00 0.010 19 11.7
60 0.103 0.019 56 0.021 91 10.7
65 0.117 0.052 99 0.046 00 13.0

图6

不同回潮率下棉纤维集合体压缩模量与相对密度关系曲线"

图7

不同回潮率棉纤维集合体压缩65%时应力云图"

表3

有限元分析所得不同回潮率 棉纤维集合体内部纤维应力"

回潮率/% 弯曲区域纤维应力/MPa 滑移区域纤维应力/MPa
4.2 >0.37 <0.19
6.6 >0.26 <0.13
8.8 >0.17 <0.09
10.7 >0.16 <0.08
12.3 >0.16 <0.08
14.1 >0.24 <0.12
[1] 孔繁荣, 周钦, 陈莉娜. 棉纤维集合体压缩后性能分析[J]. 上海纺织科技, 2018, 46(3):7-10.
KONG Fanrong, ZHOU Qin, CHEN Lina. Analysis of cotton fiber assembly performance after compression[J]. Shanghai Textile Science & Technology, 2018, 46(3): 7-10.
[2] WYK C M V. Note on the compressibility of wool[J]. Journal of The Textile Institute, 1946, 37(12): 285-292.
[3] JING Hui, YU Weidong. Evaluating compressive behavior of general fibrous assemblies[J]. Industria Textile, 2018, 69(4): 287-292.
[4] 李勇, 张宏, 张有强, 等. 棉纤维集合体压缩力传递与密度关系[J]. 纺织学报, 2016, 37(11): 19-25.
LI Yong, ZHANG Hong, ZHANG Youqiang, et al. Research on compressive force transmission properties and densities-mechanical properties model of cotton fiber assembly[J]. Journal of Textile Research, 2016, 37(11): 19-25.
[5] 李勇, 李健, 吴蓓, 等. 棉纤维集合体压缩力传递规律分析与研究[J]. 上海纺织科技, 2019, 47(10): 8-11.
LI Yong, LI Jian, WU Bei, et al. Analysis and research on the principle of compressive force transmission of cotton fiber assembly[J]. Shanghai Textile Science & Technology, 2019, 47(10): 8-11.
[6] PERUMALSAMY E, SAKTHIVEL J C, ANBUMANI N. Prediction of deformation behavior of single jersey cotton knitted fabrics using finite element method[J]. International Journal of Clothing Science and Technology, 2014, 26(3): 222-234.
doi: 10.1108/IJCST-04-2013-0037
[7] CHEN Xiaochuan, WANG Di. Finite element analysis of cotton ginning state based on ANSYS[J]. Textile Research Journal, 2019, 89(11): 2142-2153.
doi: 10.1177/0040517518786274
[8] XU Minjun, CHEN Xiaochuan, WANG Jun, et al. Finite element analysis modeling research on the compression process of cotton fiber assembly[J]. Textile Research Journal, 2020, 90(11): 1414-1427.
doi: 10.1177/0040517519886558
[9] 孔凡婷, 石磊, 张玉同, 等. 棉箱压实搅龙机构对籽棉压缩作用仿真及分析[J]. 农机化研究, 2017, 39(10):77-81.
KONG Fanting, SHI Lei, ZHANG Yutong, et al. Simulation and analysis on compression effect of screw conveyor in the hopper on seed cotton[J]. Journal of Agricultural Mechanization Research, 2017, 39(10):77-81.
[10] 夏强, 魏娟. 水份对棉纤维性能的影响及其调控[J]. 棉花加工技术, 2002 (6):25-26.
XIA Qiang, WEI Juan. The influence of humidity on the property of cotton fiber and its regulation[J]. Cotton Processing Technology, 2002 (6): 25-26.
[11] 万少安, 夏彬, 禹建鹰, 等. 棉花贮存过程中回潮率对颜色级的影响[J]. 棉纺织技术, 2019, 47(5): 49-51.
WAN Shaoan, XIA Bin, YU Jianying, et al. Effect of moisture regain on color grade during cotton storage[J]. Cotton Textile Technology, 2019, 47(5): 49-51.
[1] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[2] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[3] 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23.
[4] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[5] 丁许, 孙颖, 罗敏, 王兴泽, 陈利, 陈光伟. 航天器用高性能纤维编织绳索研究进展[J]. 纺织学报, 2021, 42(12): 180-187.
[6] 张印辉, 杨宏宽, 刘强, 何自芬. 基于模型压缩与感受野增强的下茧实时检测[J]. 纺织学报, 2021, 42(11): 29-38.
[7] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[8] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[9] 汪泽幸, 吴波, 李帅, 何斌. 循环应力松弛下黄麻织物/聚乙烯复合材料能量耗散演化规律[J]. 纺织学报, 2020, 41(10): 74-80.
[10] 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32.
[11] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[12] 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38.
[13] 谷元慧, 张典堂, 贾明皓, 钱坤. 碳纤维增强编织复合材料圆管制备及其压缩性能[J]. 纺织学报, 2019, 40(07): 71-77.
[14] 康雪莲 应柏安 张欣 段锦. 接触状态下男上装基础版型对人体压力分布的有限元模型[J]. 纺织学报, 2018, 39(11): 116-121.
[15] 牛丽 钱晓明 范金土 张文欢 师云龙. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(06): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!