纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 106-111.doi: 10.13475/j.fzxb.20210704006
ZHENG Linjuan1, YU Jia1, YIN Chong2, LIANG Zhijie1, MAO Qinghui1()
摘要:
为制备具有光催化性能的棉织物,通过引入金属有机框架材料,将尺寸适合的多金属氧酸盐装入其中,从而实现多金属氧酸盐在棉织物上的原位生长。研究了金属离子反应时间、多金属氧酸盐用量、有机配体和多金属氧酸盐的反应时间对制备的负载有多酸基金属-有机框架(POMOF)棉织物光催化性能的影响,借助扫描电子显微镜、傅里叶红外光谱仪等对POMOF负载棉织物的形貌与结构进行表征。结果表明:对棉织物进行羧基化改性,可在其表面形成多的活性位点;当改性棉织物在硝酸铜溶液中反应12 h,均苯三甲酸与多钨酸盐的量比为 1∶14, 有机配体和多酸的反应时间为10 h时,POMOF负载棉织物在135 min内对罗丹明B溶液(10 mg/L)的降解率达92.23%;该POMOF负载棉织物具有良好的光催化性能,在印染废水降解方面有较大潜力。
中图分类号:
[1] |
SABARINATHAN C, KARUPPASAMY P, VIJAYAKUMAR C T, et al. Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: kinetics, thermodynamics and mechanistic study[J]. Microchemical Journal, 2019, 146: 315-326.
doi: 10.1016/j.microc.2019.01.015 |
[2] |
KOOHI S R, ALLAHYARI S, KAHFOROOSHAN D, et al. Natural minerals as support of silicotungstic acid for photocatalytic degradation of methylene blue in wastewater[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(2): 365-377.
doi: 10.1007/s10904-018-1007-4 |
[3] |
WANG M, ZHANG M, ZHANG M, et al. In-situ mineralized robust polysiloxane-Ag@ZnO on cotton for enhanced photocatalytic and antibacterial activities[J]. Carbohydrate Polymers, 2019, 217: 15-25.
doi: S0144-8617(19)30435-7 pmid: 31079671 |
[4] |
BUTLER A, WALKER J. Marine haloperoxidases[J]. Chemical Reviews, 1993, 93(5): 1937-1944.
doi: 10.1021/cr00021a014 |
[5] |
BUTLER A, CLAGUE M, MEISTER G. Vanadium peroxide complexes[J]. Chemical Reviews, 1994, 94(3): 625-638.
doi: 10.1021/cr00027a004 |
[6] | 郁佳, 郑琳娟, 张莉, 等. 缺位型多钼酸盐改性棉织物的制备及抗紫外性能[J]. 印染助剂, 2020, 37(11): 25-28. |
YU Jia, ZHENG Linjuan, ZHANG Li, et al. Preparation and UV resistance of cotton fabric modified by polymolybdate[J]. Textile Auxiliaries, 2020, 37(11):25-28. | |
[7] | 张莉, 郁佳, 尹冲, 等. 多钒酸盐基棉织物的制备及光催化性能研究[J]. 棉纺织技术, 2022, 50(3): 39-43. |
ZHANG LI, YU Jia, YIN Chong, et al. Preparation and photocatalytic properties of polyvanadate based cotton fabric[J]. Cotton Textile Technology, 2022, 50(3):39-43. | |
[8] |
CHUI S, LO S, CHARMANT J, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150.
pmid: 10024237 |
[9] |
GETZSCHMANN J, SENKOVSKA I, WALLACHER D, et al. Methane storage mechanism in the metal-organic framework Cu3(BTC)2: an in situ neutron diffraction study[J]. Microporous and Mesoporous Materials, 2010, 136(1): 50-58.
doi: 10.1016/j.micromeso.2010.07.020 |
[10] |
KÜSGENS P, SIEGLE S, KASKEL S. Crystal growth of the metal-organic framework Cu3(BTC)2on the surface of pulp fibers[J]. Advanced Engineering Materials, 2009, 11(1/2): 93-95.
doi: 10.1002/adem.200800274 |
[11] |
PINTO M, SIERRA-AVILA C, HINESTROZA J. In situ synthesis of a Cu-BTC metal-organic frame-work (MOF 199) onto cellulosic fibrous substrates: cotton[J]. Cellulose, 2012, 19(5): 1771-1779.
doi: 10.1007/s10570-012-9752-y |
[12] | 白晓贺, 荣莎莎. 碘量法测定铜含量的应用研究[J]. 江西化工, 2020, 36(5): 15-17. |
BAI Xiaohe, RONG Shasha. Application study on the determination of copper content by iodimetry[J]. Jiangxi Chemical, 2020, 36(5): 15-17. | |
[13] | 王晓燕, 张瑞萍, 黄娟华, 等. 柠檬酸交联棉织物的纳米二氧化钛功能整理[J]. 印染, 2014, 40(24): 7-13. |
WANG Xiaoyan, ZHANG Ruiping, HUANG Juanhua, et al. Functional finishing of citric acid cross-linked cotton fabric with nano titanium dioxide[J]. China Dyeing & Finishing, 2014, 40(24): 7-13. | |
[14] | 王恩波, 胡长林, 许林. 多酸化学导论[M]. 北京: 化学工业出版社, 1998: 152. |
WANG Enbo, HU Changlin, XU Lin. Introduction to polyacidification[M]. Beijing: Chemical Industry Press, 1998: 152. | |
[15] | 李鹏熙, 陈庆淬, 杨玲玲, 等. 磷钨酸/SiC复合材料的制备及光催化性能研究[J]. 水处理技术, 2021, 47(3): 63-67. |
LI Pengxi, CHEN Qingcui, YANG Lingling, et al. Preparation and photocatalytic performance of phosphotungstic acid/SiC composites[J]. Water Treatment Technology, 2021, 47(3): 63-67. | |
[16] | 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2): 112-118. |
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible light degradation of dye wastewater by Cu-organic framework[J]. Journal of Textile Research, 2018, 39(2):112-118. |
[1] | 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118. |
[2] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[3] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[4] | 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166. |
[5] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
[6] | 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120. |
[7] | 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128. |
[8] | 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106. |
[9] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
[10] | 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63. |
[11] | 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60. |
[12] | 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(02): 196-201. |
[13] | 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110. |
[14] | 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195. |
[15] | 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179. |
|