纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 155-160.doi: 10.13475/j.fzxb.20210809306
CHEN Jinguang1(), LI Xue1, SHAO Jingfeng2, MA Lili1
摘要:
为进一步降低基于深度学习的服装目标检测模型对计算资源的占用,提出一种改进的轻量级服装目标检测方法MV3L-YOLOv5。首先使用移动网络MobileNetV3_Large构造YOLOv5的主干网络;然后在训练阶段使用标签平滑策略,以增强模型泛化能力;最后使用数据增强技术弥补DeepFashion2数据集中不同服装类别图像数量不均衡问题。实验结果表明:MV3L-YOLOv5的模型体积为10.27 MB,浮点型计算量为10.2×109次,平均精度均值为76.6%。与YOLOv5系列最轻量的YOLOv5s网络相比,模型体积压缩了26.4%,浮点型计算量减少了39%,同时平均精度均值提高了1.3%。改进后的算法在服装图像的目标检测方面效果有所提升,且模型更加轻量,适合部署在资源有限的设备中。
中图分类号:
[1] | 魏芬, 刘建平, 徐松松, 等. 基于多特征值的服装目标检测与识别算法[J]. 实验室研究与探索, 2016, 35(5):118-122. |
WEI Fen, LIU Jianping, XU Songsong, et al. Research on clothing detection and recognition based on characteristic values[J]. Research and Exploration in Laboratory, 2016, 35(5):118-122. | |
[2] | 李东, 万贤福, 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(5):122-127. |
LI Dong, WAN Xianfu, WANG Jun. Clothing style recognition approach using fourier descriptors and support vector machines[J]. Journal of Textile Research, 2017, 38(5):122-127. | |
[3] | REN Shaoqing, HE Kaiming, GIRSHICK Ross, et al. Faster R-CNN: towards real-time object detection withregion proposal networks[J]. IEEE Computer Society, 2017, 39(6): 1137-1149. |
[4] | HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 2980-2988. |
[5] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of European Conference on Computer Vision Berlin. German: Springer, 2016: 21-37. |
[6] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(4): 158-164. |
LIU Zhengdong, LIU Yihan, WANG Shouren. Depth learning method for suit detection in images[J]. Journal of Textile Research, 2019, 40(4): 158-164.
doi: 10.1177/004051757004000209 |
|
[7] | SIDNEV A, KRAPIVIN A, TRUSHKOV A, et al. Deep Mark++: real-time clothing detection at the edge[C]// Proceedings of Winter Conference on Applications of Computer Vision. Piscataway, NJ: IEEE, 2021:2979-2987. |
[8] | HOWARD A, SANDLER M, CHEN Bo, et al. Searching for mobileNetV3[C]// Proceedings of IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2019:1314-1324. |
[9] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 936-944. |
[10] | LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018:8759-8768. |
[11] | GE Yuying, ZHANG Ruimao, WANG Xiaogang, et al. DeepFashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2019: 5332-5340. |
[12] | ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: faster and better learning for boundingbox regression[C]// Proceedings of AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2020: 12993-13000. |
[1] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
[2] | 杨争妍, 薛文良, 张传雄, 丁亦, 马颜雪. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(07): 164-168. |
[3] | 王晓华, 姚炜铭, 王文杰, 张蕾, 李鹏飞. 基于改进YOLO深度卷积神经网络的缝纫手势检测[J]. 纺织学报, 2020, 41(04): 142-148. |
[4] | 许倩, 陈敏之. 基于深度学习的服装丝缕平衡性评价系统[J]. 纺织学报, 2019, 40(10): 191-195. |
[5] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
[6] | 汪珊娜 张华熊 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(08): 117-123. |
[7] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
[8] | 徐增波 周胜. 基于尺度-空间极值的织物起球目标检测[J]. 纺织学报, 2013, 34(7): 45-51. |
|