纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 169-175.doi: 10.13475/j.fzxb.20210809907

• 机械与器材 • 上一篇    下一篇

异纤分拣机剔除喷管结构参数对其性能的影响

孙戬1,2(), 姜博艺1,2, 张守京1,2, 胡胜1,2   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2021-08-02 修回日期:2022-03-15 出版日期:2022-10-15 发布日期:2022-10-28
  • 作者简介:孙戬(1984—),男,讲师,博士。主要研究方向为纺织机械设计及优化、复合材料力学、工程中的有限元法等。E-mail: sunjian@xpu.edu.cn
  • 基金资助:
    西安工程大学博士科研启动基金项目(BS201804);中国纺织工业联合会科技指导性项目(2020072);西安市现代智能纺织装备重点实验室建设项目(2019220614SYS021CG043)

Influence of different nozzle structures and parameters on nozzle performance of foreign fiber sorters

SUN Jian1,2(), JIANG Boyi1,2, ZHANG Shoujing1,2, HU Sheng1,2   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2021-08-02 Revised:2022-03-15 Published:2022-10-15 Online:2022-10-28

摘要:

为探究不同异纤分拣机剔除喷管结构及其参数对喷管性能的影响,采用数值模拟分析方法,对上扩口喷嘴、下扩口喷嘴、锥形喷嘴、矩形喷嘴4种剔除喷管喷嘴结构及参数的三维流场进行模拟仿真,得到入口压力0.6 MPa下剔除喷管入口质量流率、外部空气流场域内40 mm截面位置速度及内、外喷嘴位置速度衰减曲线。结果表明:除矩形喷嘴外,其余3种喷嘴结构均能提高喷管性能,其中上扩口喷嘴喷管性能相对最优,截面平均速度和最大速度相对原始喷管最大分别提升33.4%和12.9%;下扩口喷嘴喷管相对于原始喷管截面平均速度增大11.6%,且入口质量流率减少0.17%;锥形喷嘴喷管在整体速度分布上优于上扩口喷嘴喷管,但入口质量流率上升较大。

关键词: 异纤分拣机, 喷管结构, 喷管性能, 数值模拟, 质量流率

Abstract:

In order to investigate the influence of different nozzle structures and parameters on the nozzle performance of the foreign fiber sorters, nozzles with the upper flaring, lower flaring, conic and rectangular structures and parameters were analyzed by three dimensional fluid simulations. The mass flow rate at the nozzle inlet, the velocity at the 40 mm section in the external air flow field and the velocity attenuation curves at the inner and outer nozzles were obtained under the 0.6 MPa inlet pressure. The results show that the performance of the nozzle can be improved by the three nozzle structures mentioned above except the rectangular nozzle, and the performance of the upper flaring nozzle is the best, of which the average velocity and maximum velocity are 33.4% and 12.9%, respectively, higher than that of the original nozzle. Compared with the original nozzle, the average velocity of the lower flaring nozzle is increased by 11.6%, and the inlet mass flow rate decreased by 0.17%. The overall velocity distribution of the conical nozzle is better than that of the upper flaring nozzle, but with big increase of inlet mass flow rate.

Key words: foreign fiber sorter, nozzle structure, nozzle performance, numerical simulation, mass flow rate

中图分类号: 

  • TS112.7

图1

原始喷管模型 注:图中数值单位为mm。"

图2

优化喷嘴示意图 注:图中数值单位为mm。"

图3

边界条件示意图"

图4

外部空气流场域40 mm截面位置及速度云图"

表1

上扩口喷嘴喷管截面速度及入口质量流率"

H1/mm A/mm V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
3.6 194.3 326.4 9.778
0.3 4.0 216.0 322.4 9.583
4.4 215.3 322.2 9.435
3.6 220.2 330.5 9.998
0.5 4.0 220.3 331.9 9.859
4.4 218.9 329.3 9.704
3.6 221.4 332.4 10.065
0.7 4.0 216.9 324.5 9.576
4.4 220.5 332.9 9.905
3.6 232.4 338.4 10.053
1.0 4.0 223.2 339.3 10.145
4.4 236.1 348.9 10.103

图5

上扩口喷嘴喷管H1=1.0 mm时速度曲线"

表2

下扩口喷嘴喷管截面速度及入口质量流率"

H2/mm B/mm V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
3.6 193.4 294.7 9.120
0.3 4.0 189.9 300.2 9.118
4.4 183.5 300.8 9.120
3.6 194.1 292.6 9.119
0.5 4.0 189.4 299.0 9.128
4.4 183.1 299.2 9.121
3.6 195.5 295.4 9.118
0.7 4.0 184.6 297.1 9.121
4.4 182.9 298.5 9.119
3.6 197.5 298.9 9.116
1.0 4.0 185.0 285.5 9.117
4.4 181.0 295.4 9.120

图6

下扩口喷嘴喷管H2=1.0 mm时速度曲线"

表3

锥形喷嘴喷管截面速度及入口质量流率"

C/mm V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
3.6 218.2 321.1 10.267
4.0 224.2 332.4 10.560
4.4 225.5 335.4 10.747

图7

锥型喷嘴喷管截面中心线位置的速度分布曲线"

表4

矩形喷嘴喷管截面速度及入口质量流率"

K V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
1 167.2 316.5 9.137
2 167.8 317.5 9.163
[1] 陆世麟. 纺纱过程中异纤清除方法的探讨[J]. 纺织报告, 2018(6):14-15.
LU Shilin. Discussion on foreign fiber cleaning methods in spinning process[J]. Textile Report, 2018(6):14-15.
[2] 盖文桥, 徐雷, 丁曰东. 浅析棉花异性纤维形成的原因、分类、危害和解决措施[J]. 中国纤检, 2017(9):85-86.
GAI Wenqiao, XU Lei, DING Yuedong. Causes,classification,harm and solutions of foreign fibers in cotton[J]. China Fiber Inspection, 2017(9):85-86.
[3] 宋均燕, 王芳, 王春娥. 棉纺织中异纤清除方法、检测及表征[J]. 国际纺织导报, 2013, 41(269):36-40.
SONG Junyan, WANG Fang, WANG Chun'e. Methods、detection and characterization of foreign fiber clearing in cotton textile[J]. Melliand China, 2013, 41(269):36-40.
[4] 黄克华, 李瑞. 棉纺厂异性纤维全面控制方法及应用[J]. 棉纺织技术, 2018, 46(11):42-45.
HUANG Kehua, LI Rui. Comprehensive control method and application of foreign fiber in cotton mill[J]. Cotton Textile Technology, 2018, 46(11):42-45.
[5] 宋均燕, 赵阳, 王芳, 等. 异纤清除机使用效果分析[J]. 棉纺织技术, 2013, 41(7):41-44.
SONG Junyan, ZHAO Yang, WANG Fang, et al. Effect analysis of foreign fiber cleaner[J]. Cotton Textile Technology, 2013, 41(7):41-44.
[6] 邓楼楼, 索双富, 张孝强, 等. Fluent在棉花异性纤维清除机喷嘴结构设计中的应用[J]. 实验技术与管理, 2008(2):98-100,127.
DENG Loulou, SUO Shuangfu, ZHANG Xiaoqiang, et al. The application of fluent in the high-speed nozzle design of heterogeneous fiber sorting machine[J]. Experimental Technology and Management, 2008(2):98-100,127.
[7] 韩启龙, 马洋. 喷嘴结构对高压水射流影响及结构参数优化设计[J]. 国防科技大学学报, 2016, 38(3):68-74.
HAN Qilong, MA Yang. Influence of nozzle structure on high pressure water jet and optimization design of nozzle structure parameter[J]. Journal of National University of Defense Technology, 2016, 38(3):68-74.
[8] 周卫东, 李罗鹏, 孔垂显, 等. 淹没条件下长圆喷嘴流场数值模拟[J]. 中国石油大学学报(自然科学版), 2013, 37(1):80-84.
ZHOU Weidong, LI Luopeng, KONG Chuixian, et al. Numerical simulation of flow field of nozzle with elliptical exit under submerged condition[J]. Journal of China University of Petroleum (Natural Science Edition), 2013, 37(1):80-84.
[9] 张亮, 冯志华, 刘帅, 等. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016, 37(6):112-117, 123.
ZHANG Liang, FENG Zhihua, LIU Shuai, et al. Structure optimization design of auxiliary nozzle for air-jet loom[J]. Journal of Textile Research, 2016, 37(6):112-117, 123.
[10] 胥光申, 孔双祥, 刘洋, 等. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(8):124-129.
XU Guangshen, KONG Shuangxiang, LIU Yang, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on fluent[J]. Journal of Textile Research, 2018, 39(8):124-129.
[11] 李斯湖, 沈敏, 白聪, 等. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11):161-167.
LI Sihu, SHEN Min, BAI Cong, et al. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field[J]. Journal of Textile Research, 2019, 40(11):161-167.
[12] CHEN T, WANG K, WU L L. Numerical simulation of the air flow field in the foreign fiber separator[J]. Thermal Science Journal, 2016, 20(3):953-956.
[13] 杜玉红, 陈一平, 周志超, 等. 棉花异纤剔除喷管流道形状优化设计[J]. 天津工业大学学报, 2019, 38(4):76-82.
DU Yuhong, CHEN Yiping, ZHOU Zhichao, et al. Optimization design of nozzle flow path shape for foreign fiber sorter[J]. Journal of Tiangong University, 2019, 38(4):76-82.
[14] 张得旺, 姜佳, 韦星. 棉纺厂原棉异纤清除技术探讨[J]. 棉纺织技术, 2019, 47(4):46-48.
ZHANG Dewang, JIANG Jia, WEI Xing. Discussion on removal technology of raw cotton foreign fiber in cotton mill[J]. Cotton Textile Technology, 2019, 47(4):46-48.
[15] SHUKLA V, KAVITI A K. Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models[J]. Energy, 2017, 126:766-79.
doi: 10.1016/j.energy.2017.03.071
[1] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[2] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[3] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[4] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[5] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[6] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[7] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[8] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[9] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[10] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[11] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[12] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[13] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[14] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[15] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!