纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 183-191.doi: 10.13475/j.fzxb.20220404509
吕晓双1, 刘丽萍2, 俞建勇3, 丁彬3, 李召岭1,3()
LÜ Xiaoshuang1, LIU Liping2, YU Jianyong3, DING Bin3, LI Zhaoling1,3()
摘要:
本文结合触觉传感型电子皮肤的组成结构,首先介绍了常用构筑材料的种类、性能特点及制备工艺,然后针对致密的薄膜基和橡胶基电子皮肤透气性差,长期穿戴易导致皮肤刺痒等问题,概述了可呼吸纤维材料作为电子皮肤基底层、电极层和传感层所具有的独特优势。其次,介绍了压电式和摩擦电式电子皮肤的触觉传感原理,不仅可以实现实时的压力响应,还可收集环境中的机械能转化为电能来实现自供能,有利于制备微型、轻量、柔性的可穿戴器件。最后,从制备方法、性能表征和功能应用等方面系统总结了近年来纤维基自供能电子皮肤在运动监测、医疗检测等多个领域的应用进展,并深入探讨了目前存在的问题与未来的发展方向。
中图分类号:
[1] |
PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8 (5): 4689-4697.
doi: 10.1021/nn500441k pmid: 24592988 |
[2] |
WANG C, HWANG D, YU Z, et al. User-interactive electronic skin for instantaneous pressure visualiza-tion[J]. Nature Materials, 2013, 12 (10): 899-904.
doi: 10.1038/nmat3711 |
[3] | LOU M N, ABDALLA I, ZHU M M, et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12 (17): 19965-19973. |
[4] |
CHANG T H, LI K, YANG H, et al. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802418.
doi: 10.1002/adma.201802418 |
[5] |
YU J, HOU X, HE J, et al. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2019.104437.
doi: 10.1016/j.nanoen.2019.104437 |
[6] |
ZHANG B, TANG Y, DAI R, et al. Breath-based human-machine interaction system using triboelectric nanogenerator[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103953.
doi: 10.1016/j.nanoen.2019.103953 |
[7] |
LI M, JIE Y, SHAO L H, et al. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator[J]. Nano Research, 2019, 12 (8): 1831-1835.
doi: 10.1007/s12274-019-2443-3 |
[8] |
AHMED A, JIA Y, HUANG Y, et al. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30 (15): 14007-14021.
doi: 10.1007/s10854-019-01751-w |
[9] |
ZHOU Y, HE J, WANG H, et al. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-13281-8.
doi: 10.1038/s41598-017-13281-8 |
[10] |
MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105071.
doi: 10.1016/j.nanoen.2020.105071 |
[11] |
XU Z, WU C, LI F, et al. Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers[J]. Nano Energy, 2018, 49: 274-282.
doi: 10.1016/j.nanoen.2018.04.059 |
[12] |
LI Z, ZHU M, SHEN J, et al. All fiber structured electronic skin with high elasticity and breathability[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201908411.
doi: 10.1002/adfm.201908411 |
[13] |
YANG W, LI N W, ZHAO S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2018.DOI: 10.1002/admt.201700241.
doi: 10.1002/admt.201700241 |
[14] |
PENG X, DONG K, YE C Y, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba9624.
doi: 10.1126/sciadv.aba9624 |
[15] |
CHENG Y, WU D, HAO S, et al. Highly stretchable triboelectric tactile sensor for electronic skin[J]. Nano Energy, 2019. DOI: 10.1016/j.nanoen.2019.103907.
doi: 10.1016/j.nanoen.2019.103907 |
[16] |
QI D, ZHANG K, TIAN G, et al. Stretchable electronics based on PDMS substrates[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202003155.
doi: 10.1002/adma.202003155 |
[17] |
GE J, SUN L, ZHANG F R, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties[J]. Advanced Materials, 2016, 28 (4): 722-728.
doi: 10.1002/adma.201504239 |
[18] |
MACDONALD W A. Engineered films for display technologies[J]. Journal of Materials Chemistry, 2004, 14 (1): 4-10.
doi: 10.1039/b310846p |
[19] |
GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52 (3): 523-533.
doi: 10.1021/acs.accounts.8b00500 pmid: 30767497 |
[20] |
NATHAN A, AHNOOD A, COLE M T, et al. Flexible electronics: the next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100: 1486-1517.
doi: 10.1109/JPROC.2012.2190168 |
[21] |
RIM Y S, BAE S H, CHEN H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28 (22): 4415-4440.
doi: 10.1002/adma.201505118 |
[22] |
NI H J, LIU J G, WANG Z H, et al. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 16-27.
doi: 10.1016/j.jiec.2015.03.013 |
[23] |
SOMEYA T, BAO Z, MALLIARAS G G. The rise of plastic bioelectronics[J]. Nature, 2016, 540 (7633): 379-385.
doi: 10.1038/nature21004 |
[24] | LIU Q, JIN L, ZHANG P, et al. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors[J]. ACS Applied Materials & Interfaces, 2021, 13 (8): 10623-10631. |
[25] |
YU J, HOU X, CUI M, et al. Skin-conformal BaTiO3/ecoflex-based piezoelectric nanogenerator for self-powered human motion monitoring[J]. Materials Letters, 2020. DOI: 10.1016/j.matlet.2020.127686.
doi: 10.1016/j.matlet.2020.127686 |
[26] |
QI D, LIU Z, LEOW W R, et al. Elastic substrates for stretchable devices[J]. MRS Bulletin, 2017, 42 (2): 103-107.
doi: 10.1557/mrs.2017.7 |
[27] | QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11 (43): 40716-40725. |
[28] |
ZHONG W B, LIU Q Z, WU Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability[J]. Nanoscale, 2016, 8 (24): 12105-12112.
doi: 10.1039/c6nr02678h pmid: 27250529 |
[29] |
GONG S, LAI D T H, SU B, et al. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors[J]. Advanced Electronic Materials, 2015. DOI: 10.1002/aelm.201400063.
doi: 10.1002/aelm.201400063 |
[30] |
DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902549.
doi: 10.1002/adma.201902549 |
[31] | WANG Z, CUI H, LI S, et al. Facile approach to conductive polymer microelectrodes for flexible electronics[J]. ACS Applied Materials & Interfaces, 2021, 13 (18): 21661-21668. |
[32] | QI K, HE J, WANG H, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring[J]. ACS Applied Materials & Interfaces, 2017, 9 (49): 42951-42960. |
[33] |
HONDA W, HARADA S, ARIE T, et al. Wearable, uman-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques[J]. Advanced Functional Materials, 2014, 24 (22): 3299-3304.
doi: 10.1002/adfm.201303874 |
[34] |
CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Advanced Materials, 2016, 28 (22): 4203-4218.
doi: 10.1002/adma.201504150 |
[35] |
AHMED A, GUAN Y S, HASSAN I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.105044.
doi: 10.1016/j.nanoen.2020.105044 |
[36] |
LI X, LIN Z H, CHENG G, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano, 2014, 8(10): 10674-10681.
doi: 10.1021/nn504243j pmid: 25268317 |
[37] |
PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26 (16): 2514-2520.
doi: 10.1002/adma.201305659 |
[38] |
AHN S, CHO Y, PARK S, et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.104932.
doi: 10.1016/j.nanoen.2020.104932 |
[39] | SANG M, WANG S, LIU S, et al. A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection[J]. ACS Applied Materials & Interfaces, 2019, 11 (50): 47340-47349. |
[40] |
SEOL M, KIM S, CHO Y, et al. Triboelectric series of 2D layered materials[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201870294.
doi: 10.1002/adma.201870294 |
[41] |
ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019.DOI: 10.1038/s41467-019-09461-x.
doi: 10.1038/s41467-019-09461-x |
[42] |
ZHU M M, LOU M N, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2019.104429.
doi: 10.1016/j.nanoen.2019.104429 |
[43] |
WANG Y, ZHU M, WEI X, et al. A dual-mode electronic skin textile for pressure and temperature sensing[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.130599.
doi: 10.1016/j.cej.2021.130599 |
[44] |
BU T, XIAO T, YANG Z, et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201800066.
doi: 10.1002/adma.201800066 |
[45] |
DONG K, WU Z, DENG J, et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201804944.
doi: 10.1002/adma.201804944 |
[46] |
ZHU M, WANG Y, LOU M, et al. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing[J]. Nano Energy, 2021.DOI: 10.1016/j.nanoen.2020.105669.
doi: 10.1016/j.nanoen.2020.105669 |
[47] |
PENG X, DONG K, NING C, et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202103559.
doi: 10.1002/adfm.202103559 |
[48] |
ZHU M, LOU M, YU J, et al. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105208.
doi: 10.1016/j.nanoen.2020.105208 |
[1] | 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81. |
[2] | 王罗俊, 彭来湖, 史伟民, 张伟中. 基于压电黏合体的电磁选针检测技术[J]. 纺织学报, 2022, 43(08): 167-175. |
[3] | 马训鸣, 李峙毅, 吕广雷, 陈勇洁. 新型夹纱器压电驱动器的运动特性[J]. 纺织学报, 2022, 43(08): 176-182. |
[4] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
[5] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
[6] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[7] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[8] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[9] | 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32. |
[10] | 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020, 41(01): 26-31. |
[11] | 李辉 王娇娜 赵树宇 李从举. 柔性全编织摩擦纳米发电织物的制备[J]. 纺织学报, 2018, 39(09): 34-38. |
[12] | 蒋洁 陈胜 李静静 付润芳 林义 顾迎春. 静电纺钛酸钡/聚偏氟乙烯纳米复合柔性压电纤维膜[J]. 纺织学报, 2018, 39(02): 14-19. |
[13] | 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6. |
[14] | 刘婉婉 高强 王阳毅 龙啸云 葛明桥. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(06): 6-10. |
[15] | 赖森财 任雯 刘永桂. 嵌入式电子贾卡控制系统设计[J]. 纺织学报, 2016, 37(10): 135-140. |
|