纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 200-208.doi: 10.13475/j.fzxb.20210401609
程宁波1,2,3, 缪东洋2, 王先锋2, 王朝晖1,3(), 丁彬2, 俞建勇2
CHENG Ningbo1,2,3, MIAO Dongyang2, WANG Xianfeng2, WANG Zhaohui1,3(), DING Bin2, YU Jianyong2
摘要:
为提高个体舒适性,降低建筑制冷和供暖能耗,研发可调节人体与环境热湿交换的纺织品是一种极具前景的解决方案,为此对国内外热湿管理功能纺织品的研究进行了回顾。首先介绍了个人热湿舒适管理机制,其次归纳了辐射调温纺织品、相变调温纺织品、智能响应纺织品、导热纺织品、能量转换的调温纺织品和水分管理纺织品6种常见的可用于个人热湿管理的先进功能纺织品,概述了基于不同热湿管理机制功能纺织品的研究进展及其在多个领域的潜在应用。研究认为:织物调控人体-服装微气候热量和水分平衡是个体舒适的关键;指出目前热湿管理先进功能纺织品存在规模制备困难、功能单一化、智能化不足和缺乏体系的热湿舒适性评价等问题;展望了用于个人热量管理的高级纺织品、能量收集技术和柔性电子设备的集成是未来智能服装的发展趋势。
中图分类号:
[1] | 姜怀. 常用/特殊服装功能构成、评价与展望(上)[M]. 上海: 东华大学出版社, 2006:2-13. |
JIANG Huai. Functional composition, evaluation and prospect of common/special clothing:Ⅰ[M]. Shanghai: Donghua University Press, 2006:2-13. | |
[2] |
GUGLIUZZA Annarosa, DRIOLI Enrico. A review on membrane engineering for innovation in wearable fabrics and protective textiles[J]. Journal of Membrane Science, 2013, 446:350-375.
doi: 10.1016/j.memsci.2013.07.014 |
[3] |
WERNER Jürgen. Control aspects of human temperature regulation[J]. Automatica, 1981, 17(2):351-362.
doi: 10.1016/0005-1098(81)90052-2 |
[4] |
PÉREZ-LOMBARD L, ORTIZ J, CORONEL J F, et al. A review of HVAC systems requirements in building energy regulations[J]. Energy and Buildings, 2011, 43(2/3): 255-268.
doi: 10.1016/j.enbuild.2010.10.025 |
[5] | CENTER B P. Annual energy outlook 2020[J]. Energy Information Administration, 2020, 12: 1672-1679. |
[6] | Chiara Del Mastro. Cooling[R]. Paris: IEA, 2021. |
[7] | International Energy Association. Global energy demand rose by 2.3% in 2018, its fastest pace in the last decade[N/OL]. IEA, (2019-5-26) [2019-5-28]. https://www.iea.org/news/global-energydemand-rose-by-23-in-2018-its-fastest-pace-in-the-last-decade. |
[8] |
LUNDGREN Karin, KJELLSTROM Tord. Sustainability challenges from climate change and air conditioning use in urban areas[J]. Sustainability, 2013, 5(7):3116-3128.
doi: 10.3390/su5073116 |
[9] |
MCLINDEN Mark O, SEETON Christopher J, PEARSON Andy. New refrigerants and system configurations for vapor-compression refrigeration[J]. Science, 2020, 370(6518):791-796.
doi: 10.1126/science.abe3692 pmid: 33184206 |
[10] | 罗茂辉. 建筑环境人体热适应规律与调节机理研究[D]. 北京: 清华大学, 2017:26-48. |
LUO Maohui. Research on the dynamics and mechanism of human thermal adaptation in building environ-ment[D]. Beijing: Tsinghua University, 2017:26-48. | |
[11] |
NOËL Djongyang, RENÉ Tchinda, DONATIEN Njomo. Thermal comfort: a review paper[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9):2626-2640.
doi: 10.1016/j.rser.2010.07.040 |
[12] |
PENG L H, SU B, YU A B, et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 2019, 26(1):1-34.
doi: 10.1007/s10570-019-02249-8 |
[13] |
HU R, LIU Y D, SHIN S M, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020.DOI: org/10.1002/aenm.201903921.
doi: org/10.1002/aenm.201903921 |
[14] |
FANGER P O. Assessment of man's thermal comfort in practice[J]. British Journal of Industrial Medicine, 1973, 30(4):313-324.
pmid: 4584998 |
[15] |
YAO R M, LI B Z, LIU J. A theoretical adaptive model of thermal comfort-adaptive predicted mean vote (aPMV)[J]. Building and Environment, 2009, 44(10):2089-2096.
doi: 10.1016/j.buildenv.2009.02.014 |
[16] | 张渭源. 服装舒适性与功能[M]. 2版. 北京: 中国纺织出版社, 2011:2-4. |
ZHANG Weiyuan. Clothing comfort and function[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2011:2-4. | |
[17] |
WONG A S W, LI Y, YEUNG P K W. Predicting clothing sensory comfort with artificial intelligence hybrid models[J]. Textile Research Journal, 2004, 74(1):13-19.
doi: 10.1177/004051750407400103 |
[18] |
GRODZINSKY E, LEVANDER M S. Understanding fever and body temperature: a cross-disciplinary approach to clinical practice[J]. Anesthesia & Analgesia, 2020.DOI: 10.1213/ANE.0000000000004777.
doi: 10.1213/ANE.0000000000004777 |
[19] | ZHANG C, WANG F. Comfort management of fibrous materials[J]. Hoboken: Wiley Online Library, 2020: 857-887. |
[20] | 孙庆伟. 人体生理学[M]. 北京: 中国医药科技出版社, 2009:140-149. |
SUN Qingwei. The physiology of the human body[M]. Beijing: China Medical Science and Technology Press, 2009:140-149. | |
SUN Qingwei. Human physiology[M]. Beijing: China Medical Science and Technology Press, 2009:140-149. | |
[21] |
PEDERSEN Lorents. The heat regulation of the human body[J]. Acta Physiologica Scandinavica, 1969, 77(1/2):95-105.
doi: 10.1111/j.1748-1716.1969.tb04556.x |
[22] |
HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(12):624.
pmid: 16577831 |
[23] |
SHIBASAKI M, WILSON T E, et al. Neural control and mechanisms of eccrine sweating during heat stress and exercise[J]. Journal of Applied Physiology, 2006, 100(5): 1692-1701.
pmid: 16614366 |
[24] | WAN X H, ZENG R. Handbook of clinical diagno-stics[M]. China: People's Medical Publishing House, 2019:3-12. |
[25] |
ELIZABETH P. Living with heat[J]. Science, 2020, 370(6518):778-781.
doi: 10.1126/science.370.6518.778 pmid: 33184201 |
[26] |
HOYT T, ARENS E, ZHANG H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings[J]. Building and Environment, 2015, 88:89-96.
doi: 10.1016/j.buildenv.2014.09.010 |
[27] |
GHAHRAMANI A, ZHANG K, DUTTA K, et al. Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings[J]. Applied Energy, 2016, 165:930-942.
doi: 10.1016/j.apenergy.2015.12.115 |
[28] |
TABOR J, CHATTERJEE K, GHOSH T K. Smart textile-based personal thermal comfort systems: current status and potential solutions[J]. Advanced Materials Technologies, 2020.DOI: org/10.1002/admt.201901155.
doi: org/10.1002/admt.201901155 |
[29] |
PENG Y C, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4):724-742.
doi: 10.1016/j.joule.2020.02.011 |
[30] |
TONG J K, HUANG X P, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6):769-778.
doi: 10.1021/acsphotonics.5b00140 |
[31] |
HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
doi: 10.1126/science.aaf5471 |
[32] |
PENG Y C, CHEN J, SONG AY, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2):105-112.
doi: 10.1038/s41893-018-0023-2 |
[33] |
CAI L L, SONG AY, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018.DOI: org/10.1002/adma.201802152.
doi: org/10.1002/adma.201802152 |
[34] | XIAO R, HOU C, YANG W, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44673-44681. |
[35] |
LIU R, WANG X W, YU J R, et al. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling[J]. Macromolecular Materials and Engineering, 2018.DOI: org/10.1002/mame.201700456.
doi: org/10.1002/mame.201700456 |
[36] | SONG Y N, MA R J, XU L, et al. Wearable polyethylene/polyamide composite fabric for passive human body cooling[J]. ACS Applied Materials & Interfaces, 2018, 10(48):41637-41644. |
[37] |
WANG X, LIU X H, LI ZH Y, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.201907562.
doi: org/10.1002/adfm.201907562 |
[38] |
WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020.DOI: org/10.1016/j.solmat.2020.110525.
doi: org/10.1016/j.solmat.2020.110525 |
[39] |
ZHANG H W, KCS L Y, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14657-14666.
doi: 10.1073/pnas.2001802117 |
[40] |
HSU P C, LIU X G, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2014, 15(1):365-371.
doi: 10.1021/nl5036572 |
[41] |
YANG A K, CAI L L, ZHANG R F, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6):3506-3510.
doi: 10.1021/acs.nanolett.7b00579 pmid: 28505460 |
[42] |
HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017.DOI: 10.1126/sciadv.170089.
doi: 10.1126/sciadv.170089 |
[43] | WU J W, HU R, ZENG S N, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19015-19022. |
[44] | YU X, LI Y, YIN X, et al. Corncoblike, superhydrophobic, and phase-changeable nanofibers for intelligent thermoregulating and water-repellent fabrics[J]. ACS Applied Materials & Interfaces, 2019, 11(42):39324-39333. |
[45] |
BABAPOOR A, KARIMI G, GOLESTANEH S I, et al. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization[J]. Applied Thermal Engineering, 2017, 118:398-407.
doi: 10.1016/j.applthermaleng.2017.02.119 |
[46] |
TING D, WEI J, YE L, et al. A phase change material embedded composite consisting of kapok and hollow PET fibers for dynamic thermal comfort regulation[J]. Industrial Crops & Products, 2020.DOI: org/10.1016/j.indcrop.2020.112945.
doi: org/10.1016/j.indcrop.2020.112945 |
[47] |
SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020.DOI: org/10.1016/j.applthermaleng.2020.115340.
doi: org/10.1016/j.applthermaleng.2020.115340 |
[48] |
HU J L, MENG H, LI G Q, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures, 2012. DOI: 10.1088/0964-1726/21/5/053001.
doi: 10.1088/0964-1726/21/5/053001 |
[49] |
ZHANG X, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427):619-623.
doi: 10.1126/science.aau1217 pmid: 30733415 |
[50] |
YAO L N, WANG W, CHENG C Y, et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J]. Science Advances, 2017.DOI: 10.1126/sciadv.1601984.
doi: 10.1126/sciadv.1601984 |
[51] |
WANG Y, LIANG X, ZHU H, et al. Reversible water transportation diode: temperature-adaptive smart janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.201907851.
doi: org/10.1002/adfm.201907851 |
[52] |
HU J L, IRFAN IQBAL M, SUN F. Wool can be cool: water-actuating woolen knitwear for both hot and cold[J]. Advanced Functional Materials, 2020.DOI: org/10.1002/adfm.202005033.
doi: org/10.1002/adfm.202005033 |
[53] |
ZHONG Y, ZHANG F H, WANG M, et al. Reversible humidity sensitive clothing for personal thermoregula-tion[J]. Scientific Reports, 2017, 7(1):1-8.
doi: 10.1038/s41598-016-0028-x |
[54] | 施瑶. 高导热聚合物复合纺织品的制备与性能研究[D]. 上海: 上海师范大学, 2020:2-16. |
SI Yao. Preparation and properties of high thermal conductivity polymer composites[D]. Shanghai: Shanghai Normal University, 2020:2-16. | |
[55] |
LIN Y, JIA Y, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2730-2742.
doi: 10.1016/j.rser.2017.10.002 |
[56] |
ABBAS A, ZHAO Y, WANG X G, et al. Cooling effect of mwcnt-containing composite coatings on cotton fabrics[J]. Journal of The Textile Institute, 2013, 104(8):798-807.
doi: 10.1080/00405000.2012.757007 |
[57] | YU X, LI Y, WANG X F, et al. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics[J]. ACS Applied Materials & Interfaces, 2020, 12(28):32078-32089. |
[58] | HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocompo-sites[J]. Materials Science and Engineering, 2018, 132:1-22. |
[59] |
MIAO D Y, WANG X F, YU J Y, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021.DOI: org/10.1002/adfm.202008705.
doi: org/10.1002/adfm.202008705 |
[60] |
GAO T T, YANG Z, CHEN C J, et al. Three-dimensional printed thermal regulation textiles[J]. ACS Nano, 2017, 11(11):11513-11520.
doi: 10.1021/acsnano.7b06295 pmid: 29072903 |
[61] |
ZHAO M M, GAO C S, WANG F M, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3):232-237.
doi: 10.1016/j.ergon.2013.01.001 |
[62] | 曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007, 28(6): 100-105. |
ZENG Yanzhang, DENG Zhongshan, LIU Jing, et al. Micro-fan-array system enabled air conditioning suit for cooling human body[J]. Journal of Textile Research, 2007, 28(6):100-105. | |
[63] | GUO T H, SHANG B F, DUAN B, et al. Design and testing of a liquid cooled garment for hot environ-ments[J]. Journal of Thermal Biology, 2015, 49:47-54. |
[64] |
ZHAO D L, LU X, FAN T Z, et al. Personal thermal management using portable thermoelectrics for potential building energy saving[J]. Applied Energy, 2018, 218:282-291.
doi: 10.1016/j.apenergy.2018.02.158 |
[65] |
HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: org/10.1002/smll.201801527.
doi: org/10.1002/smll.201801527 |
[66] | 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016. 37(12):24-28. |
XU Jingxian, LIU Li, LI Jun. Development and performance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016, 37(12):24-28. | |
[67] |
ZHANG T, LI K W, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41:35-42.
doi: 10.1016/j.nanoen.2017.09.019 |
[68] | 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5):694-702. |
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic submicron fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5):694-702. | |
[69] | 雷敏, 李毓陵, 马颜雪, 等. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(7):174-181. |
LEI Min, LI Yuling, MA Yanxue, et al. Research progress of moisture evaporating performance of fabrics[J]. Journal of Textile Research, 2020, 41(7):174-181.
doi: 10.1177/004051757104100215 |
|
[70] |
DAI B, LI K, SHI L X, et al. Bioinspired janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019.DOI: 10.1126/sciadv.aaw0536.
doi: 10.1126/sciadv.aaw0536 |
[71] | WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2):1060-1070. |
[72] |
MIAO D Y, HUANG Z, WANG X F, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018.DOI: org/10.1016/j.nanoen.2017.09.019.
doi: org/10.1016/j.nanoen.2017.09.019 |
[1] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
|