纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 209-215.doi: 10.13475/j.fzxb.20210305007

• 综合述评 • 上一篇    下一篇

高效低阻空气过滤材料研究进展

杨吉震1,2,3, 刘强飞1,2,3, 何瑞东1,2,3, 吴韶华1, 何宏伟1,2,3, 宁新1,2,3, 周蓉1,2,3(), 董湘琳4, 齐贵山4   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 非织造材料与产业用纺织品创新研究院,山东 青岛 266071
    3.山东省特型非织造材料工程研究中心, 山东 青岛 266071
    4.山东省兴国新力环保科技股份有限公司, 山东 淄博 255000
  • 收稿日期:2021-03-12 修回日期:2021-11-29 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 周蓉
  • 作者简介:杨吉震(1997—),男,硕士生。主要研究方向为纤维过滤材料。

Research progress in high efficiency and low resistance air filter materials

YANG Jizhen1,2,3, LIU Qiangfei1,2,3, HE Ruidong1,2,3, WU Shaohua1, HE Hongwei1,2,3, NING Xin1,2,3, ZHOU Rong1,2,3(), DONG Xianglin4, QI Guishan4   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shandong Center for Engineered Nonwovens, Qingdao, Shandong 266071, China
    4. Shandong Xingguo Xinli Environmental Protection Technology Co., Ltd., Zibo, Shandong 255000, China
  • Received:2021-03-12 Revised:2021-11-29 Published:2022-10-15 Online:2022-10-28
  • Contact: ZHOU Rong

摘要:

目前,空气过滤材料多存在过滤效率与过滤阻力不平衡的问题。为进一步提高其品质因子,以近年来国内外纳米纤维膜、熔喷过滤材料以及耐高温针刺过滤材料的相关研究为基础,阐述了驻极体过滤材料、微纳结构过滤材料以及梯度结构化和后整理方法提高空气过滤材料过滤效率的研究进展;分析和讨论了驻极体材料电荷储存能力的影响因素以及不同空气过滤材料的驻极类型;系统总结了微纳结构材料的制备方法,比较了梯度结构化和后整理等方式提高材料过滤效率的优缺点。认为空气过滤材料的驻极化与微纳结构化将会是研究热点,在今后的空气净化领域应用中具有极大的发展空间。

关键词: 静电纺丝, 熔喷材料, 空气过滤, 驻极体, 微纳结构, 高效低阻

Abstract:

In order to develop high efficiency and low resistance air filtration materials, solve the imbalance between filtration efficiency and filtration resistance in the current research, and further improve the quality factor for filtration materials, this paper reviews the relevant research on nanofiber membrane, melt-blown filtration materials and high-temperature resistant needle filter mat in recent years.The research status of electret filtration materials, micro-nano structure filtration materials, gradient structuring and finishing methods to improve the filtration efficiency of materials are reviewed.The influencing factors of charge storage capacity of materials are analyzed and discussed. The preparation methods of micro-nano structure materials are summarized. The advantages and disadvantages of gradient structuring and finishing methods for improving filtration efficiency were compared. It is concluded that the electret and micro-nano structured filtration materials will draw great attention from researchers because of their great potentials in the future field of air purification.

Key words: electrospinning, meltblown material, air filtration, electret, micro-nano structure, high efficiency and low resistance

中图分类号: 

  • TS174

表1

不同驻极方式的对比"

驻极方式 优点 缺点
静电驻极 电荷储存能力强 仅适用于静电纺丝工艺,受材料影响较大
电晕驻极 工艺成熟,适用范围广泛,更适合面密度较大的材料,电荷主要储存在材料表面 电荷逸散较快,驻极体不稳定,过滤性能难以达到峰值
摩擦驻极 驻极效果好,电荷分布在材料内部 仅适用于带有不同电性的纤维
水驻极 不需使用高压电,驻极体稳定,保存时间长 工艺不成熟,具体应用难度大

表2

不同提升过滤效率方式的优缺点"

处理方式 过滤效率 过滤阻力 容尘量 成本
浸渍 一般 一般 一般 一般
涂层 一般 一般 一般
覆膜 初始高,后期趋于平稳
梯度结构设计 较高
[1] LI Yuyao, YIN Xia, YU Jianyong, et al. Electrospun nanofibers for high-performance air filtration[J]. Composites Communications, 2019, 15: 6-19.
doi: 10.1016/j.coco.2019.06.003
[2] YANG Xue, PU Yi, LI Shuxia, et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43188-43199.
[3] BAI Mingqi, WANG Jian, ZHOU Rong, et al. Polyphenylene sulfide fabric with enhanced oxidation resistance and hydrophobicity through polybenzoxazine surface coating for emission control in harsh environ-ment[J]. Journal of Hazardous Materials, 2022. DOI: 10.2139/ssrn.3973894.
doi: 10.2139/ssrn.3973894
[4] 王娜. PM2.5空气过滤用静电纺微/纳纤维材料的结构设计及性能研究[D]. 上海: 东华大学, 2015:3-4.
WANG Na. Tunable fabrication of micro-nanostructured electrospun fibrous membranes and their application in PM2.5 air filtration[D]. Shanghai: Donghua University, 2015: 3-4.
[5] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174.
[6] ZHAO Xinglei, LI Yuyao, HUA Ting, et al. Cleanable air filter transferring moisture and effectively capturing PM2.5[J]. Small, 2017.DOI: 10.1002/smll.201603306.
doi: 10.1002/smll.201603306
[7] YANG Xue, PU Yi, ZHANG Yifei, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2020.122254.
doi: 10.1016/j.jhazmat.2020.122254
[8] WANG Shan, ZHAO Xinglei, YIN Xia, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for highefficiency air filtration[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23985-23994.
[9] LI Yuyao, YIN Xia, SI Yang, et al. All-polymer hybrid electret fibers for high-efficiency and low-resistance filter media[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125626.
doi: 10.1016/j.cej.2020.125626
[10] DING Xinxin, LI Yuyao, SI Yang, et al. Electrospun polyvinylidene fluoride/SiO2 nanofibrous membranes with enhanced electret property for efficient air filtra-tion[J]. Composites Communications, 2019, 13: 57-62.
doi: 10.1016/j.coco.2019.02.008
[11] 张剑锋. 熔喷聚乳酸空气净化材料的微观结构与驻极体性能和过滤性能相关性研究[D]. 杭州: 杭州电子科技大学, 2020:27-39.
ZHANG Jianfeng. Study on correlation between the microstructure and performance of electrets and filtration performance of melt-blown PLA electret air purification materials[D]. Hangzhou: Hangzhou Dianzi University, 2020: 27-39.
[12] LIU Jinxin, ZHANG Haifeng, GONG Hugh, et al. Polyethylene/polypropylene bicomponent spunbond air filtration materials containing magnesium stearate for efficient fine particle capture[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40592-40601.
[13] 刘妙峥. 有机添加剂杂化聚丙烯熔喷滤料的性能研究[D]. 上海: 东华大学, 2018:7-9.
LIU Miaozheng. Study on properties of organic additive melt blown polypropylene filter material[D]. Shanghai: Donghua University, 2018:7-9.
[14] FAN Fengru, TIAN Zhongqun, WANG Zhonglin. Flexible triboelectric generator![J]. Nano Energy, 2012, 1(2): 328-334.
doi: 10.1016/j.nanoen.2012.01.004
[15] WU Changsheng, WANG Aurelia C, DING Wenbo, et al. Triboelectric nanogenerator: a foundation of the energy for the new era[J]. Advanced Energy Materials, 2019. DOI: 10.1002/aenm.201802906.
doi: 10.1002/aenm.201802906
[16] WANG Yuxiao, XU Yukang, WANG Dan, et al. Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulatematter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48437-48449.
[17] ZHANG Ruichao, XU Qi, BAI Suo, et al. Enhancing the filtration efficiency and wearing time of disposable surgical masks using TENG technology[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105434.
doi: 10.1016/j.nanoen.2020.105434
[18] LIM C T. Nanofiber technology: current status and emerging developments[J]. Progress in Polymer Science, 2017, 70: l-17.
[19] LI Yuyao, CAO Leitao, YIN Xia, et al. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3[J]. Journal of Colloid and Interface Science, 2020, 578: 565-573.
doi: S0021-9797(20)30742-6 pmid: 32544628
[20] CAI Rongrong, LI Shuzheng, ZHANG Lizhi, et al. Fabrication and performance of a stable micro/nano composite electret filter for effective PM2.5 capture[J]. Science of the Total Environment, 2020. DOI: 10.1016/j.scitotenv.2020.138297.
doi: 10.1016/j.scitotenv.2020.138297
[21] 张恒, 甄琪, 刘雍, 等. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(9):28-34.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure[J]. Journal of Textile Research, 2019, 40(9): 28-34.
[22] 何宏升. 熔喷PS/PP非织造材料制备与性能研究[D]. 天津: 天津工业大学, 2018:7-8.
HE Hongsheng. Preparation and properties of melt-blown PS/PP nonwovens[D]. Tianjin: Tiangong University, 2018:7-8.
[23] 何宏升, 邓南平, 范兰兰, 等. 熔喷非织造技术的研究及应用进展[J]. 纺织导报, 2016(S1):71-80.
HE Hongsheng, DENG Nanping, FAN Lanlan, et al. Progress in the research and application of melt-blown nonw oven technology[J]. China Textile Leader, 2016(S1):71-80.
[24] WANG Qiannan, BAI Yuying, XIE Jianfei, et al. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles[J]. Powder Technology, 2016, 292: 54-63.
doi: 10.1016/j.powtec.2016.01.008
[25] 申莹, 邓炳耀, 刘庆生, 等. 不同填充密度的梯度结构复合滤材的制备及其性能[J]. 纺织学报, 2017, 38(7):23-27.
SHEN Ying, DENG Bingyao, LIU Qingsheng, et al. Preparation and properties of gradient filter materials with different packing density[J]. Journal of Textile Research, 2017, 38 (7): 23-27.
[26] LIU Yongsheng, QIAN Xiaoming, ZHANG Heng, et al. Preparing micro/nano-fibrous filters for effective PM2.5 under low filtration resistance[J]. Chemical Engineering Science, 2020. DOI: 10.1016/j.ces.2020.115523.
doi: 10.1016/j.ces.2020.115523
[27] YANG Ming, CAO Keqin, SUI Lang, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822
[28] 刘培杰. 芳纶纳米纤维涂覆非织造滤材在高温过滤领域的应用[D]. 上海: 东华大学, 2018:16-39.
LIU Peijie. Application of aramid nanofiber coated nonwovens for high temperature filtration[D]. Shanghai: Donghua University, 2018:16-39.
[29] 燕芮. 对位芳纶纳米纤维/熔喷非织造复合过滤材料的制备及性能研究[D]. 上海: 东华大学, 2020:28-47.
YAN Rui. Fabrication and characterization of aramid nanofiber/meltblown nonwoven composites for air filtration[D]. Shanghai: Donghua University, 2020:28-47.
[30] 刘强飞, 吴韶华, 杨吉震, 等. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10):47-52.
LIU Qiangfei, WU Shaohua, YANG Jizhen, et al. Preparation and properties of polytetrafluoroethylene/phenylene sulfide needled felt modified by aramid nanofiber[J]. Journal of Textile Research, 2021, 42(10):47-52.
[31] 张美云, 罗晶晶, 杨斌, 等. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5):5158-5166.
ZHANG Meiyun, LUO Jingjing, YANG Bin, et al. Research progress of preparation and application of aramid nanofibers[J]. Meterals Reports, 2020, 34(5):5158-5166.
[32] 刘强飞, 周蓉, 吴韶华, 等. 烟气净化用高温过滤材料的功能性研究进展[J]. 棉纺织技术, 2021, 49(1):4-10.
LIU Qiangfei, ZHOU Rong, WU Shaohua, et al. Functional study progress of high temperature filter material for flue gas purification[J]. Cotton Textile Technology, 2021, 49(1):4-10.
[33] YU Yan, XIONG Siwei, HUANG Hao, et al. Fabrication and application of poly(phenylene sulfide) ultrafine fiber[J]. Reactive & Functional Polymers, 2020. DOI: 10.1016/j.reactfunctpolym.2020.104539.
doi: 10.1016/j.reactfunctpolym.2020.104539
[34] 覃俊, 陈丽萍, 何勇. 聚苯硫醚熔喷超细纤维的应用前景展望[J]. 纺织科技进展, 2020(10):1-5.
QIN Jun, CHEN Liping, HE Yong. Application prospect of poly(p-phenylene sulfide) melt blown superfine fiber[J]. Progress in Textile Science & Technology, 2020(10):1-5.
[35] 张恒, 甄琪, 王俊南, 等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016, 37(5):17-22.
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[ J]. Journal of Textile Research, 2016, 37(5):17-22.
[1] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[2] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[3] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[4] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[5] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[6] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[7] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[8] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[9] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[10] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[11] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[12] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[13] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[14] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[15] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!