纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 24-30.doi: 10.13475/j.fzxb.20210804907

• 纤维材料 • 上一篇    下一篇

棕榈纤维毡/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)热压复合材料的吸声性能

张毅1(), 邵利锋1, 杨彬1, 高金霞2, 郁崇文3   

  1. 1.浙江工业职业技术学院, 浙江 绍兴 312000
    2.绍兴透真纺织科技有限公司, 浙江 绍兴 312000
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2021-08-10 修回日期:2022-03-26 出版日期:2022-10-15 发布日期:2022-10-28
  • 作者简介:张毅(1985—),男,副教授,硕士。主要研究方向为麻类纤维的脱胶与产品开发。E-mail: zhangyigyxy@163.com
  • 基金资助:
    浙江省教育厅一般科研项目(Y2020146090);浙江省大学生科技创新活动计划暨新苗人才计划项目(2022R454A006)

Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites

ZHANG Yi1(), SHAO Lifeng1, YANG Bin1, GAO Jinxia2, YU Chongwen3   

  1. 1. Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Touzhen Textile Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-08-10 Revised:2022-03-26 Published:2022-10-15 Online:2022-10-28

摘要:

为缓解当前我国汽车内饰用黄麻吸声复合材料产量缩减的现状,研究了棕榈纤维毡/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)热压复合材料的吸声性能。在分析Johnson-Allard吸声模型后,研究了棕榈纤维毡与PHBV质量比、棕榈纤维毡面密度、棕榈纤维线密度、棕榈纤维毡梯度结构、多孔粉煤灰陶粒等对热压复合材料吸声系数的影响;探讨了优化工艺下棕榈纤维毡/PHBV热压复合材料的结构和性能。结果表明:当棕榈纤维毡与PHBV质量比为40∶60,棕榈纤维线密度为14.5 dtex,棕榈纤维毡梯度结构为143.3/102.5 g/m2时,制备的复合材料的平均吸声系数(200~1 600 Hz)最高,可达到0.53,添加质量分数为5%的多孔粉煤灰陶粒,可将复合材料的平均吸声系数提高到0.66,具有部分替代黄麻制备吸声复合材料的潜力。

关键词: 棕榈纤维毡, 复合材料, 梯度结构, 吸声系数, 流阻

Abstract:

In order to supplement the decreased production of jute-based acoustic composite materials for automobile interior, sound absorption properties of palm fiber felts/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were studied. Following Johnson-Allard acoustic absorption model, the effects of different palm fiber felts/PHBV mass ratio, palm fiber surface density, palm fiber linear density, palm fiber gradient structure and porous pulverized coal ash aggregate on acoustic absorption were analyzed, inparalell to the investigation into the tensile properties, thermal stability properties, infrared spectrum and cross section of SEM morphology. The results show that the best mass ratio of palm fiber felt to PHBV for acoustic performance was 40∶60, the linear density of palm fiber was 14.5 dtex and the gradient structure of palm fiber mat was 143.3/102.5 g/m2. The average was the highest (0.53) for frequencies between 200 and 1 600 Hz. The addition of 5% porous coal ash ceramsite could increase the acoustic composite materials to 0.66, which has the potential to partially replace jute for the making acoustic composite materials.

Key words: palm fiber felt, composite material, gradient structure, acoustic composite materials, flow resistance

中图分类号: 

  • TS102.221

表1

棕榈纤维毡和PHBV质量比对吸声系数的影响"

质量比 不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
30∶70 0.09 0.15 0.19 0.26 0.34 0.43 0.48 0.52 0.55 0.57 0.36
40∶60 0.19 0.24 0.35 0.51 0.65 0.69 0.72 0.74 0.78 0.81 0.57
50∶50 0.15 0.21 0.27 0.40 0.51 0.59 0.61 0.66 0.71 0.73 0.48
60∶40 0.13 0.19 0.23 0.34 0.45 0.55 0.60 0.63 0.68 0.71 0.45

表2

棕榈纤维毡面密度对吸声系数的影响"

面密度/
(g·m-2)
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
102.5 0.11 0.10 0.13 0.15 0.20 0.26 0.39 0.45 0.56 0.60 0.28
143.3 0.12 0.11 0.16 0.23 0.33 0.45 0.51 0.59 0.63 0.68 0.38
206.2 0.11 0.09 0.12 0.16 0.19 0.24 0.35 0.42 0.46 0.51 0.26

表3

棕榈纤维线密度对吸声系数的影响"

线密度/
dtex
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
14.5 0.12 0.11 0.22 0.29 0.37 0.49 0.54 0.60 0.68 0.70 0.41
15.8 0.11 0.09 0.18 0.24 0.29 0.38 0.47 0.52 0.57 0.63 0.35
16.5 0.09 0.08 0.15 0.18 0.23 0.28 0.35 0.41 0.45 0.52 0.27

表4

棕榈纤维毡梯度结构对吸声系数的影响"

梯度结构
(g·m-2)
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
102.5/143.3 0.05 0.13 0.24 0.31 0.37 0.42 0.47 0.52 0.57 0.64 0.37
122.9/122.9 0.06 0.15 0.29 0.35 0.43 0.49 0.54 0.59 0.63 0.74 0.43
143.3/102.5 0.09 0.19 0.35 0.46 0.55 0.61 0.68 0.73 0.77 0.83 0.53

表5

多孔粉煤灰陶粒质量分数对吸声系数的影响"

质量分
数/%
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
0 0.09 0.19 0.35 0.46 0.55 0.61 0.68 0.73 0.77 0.83 0.53
5 0.14 0.27 0.47 0.60 0.69 0.82 0.86 0.89 0.92 0.93 0.66
10 0.13 0.24 0.43 0.57 0.66 0.71 0.74 0.78 0.81 0.86 0.59

图1

棕榈纤维及棕榈纤维毡/PHBV吸声复合材料的SEM照片"

图2

棕榈纤维毡/PHBV吸声复合材料的红外光谱图"

图3

棕榈纤维毡/PHBV吸声复合材料的TG和DTG曲线"

图4

棕榈纤维毡/PHBV吸声复合材料的应力-应变曲线"

[1] WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nano-cellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3):277-278.
doi: 10.1038/nnano.2014.248
[2] AHMAD F, CHOI H S, PARK M K. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties[J]. Macromolecular Materials and Engineering, 2015, 300(1):10-24.
doi: 10.1002/mame.201400089
[3] KHAN M. Effect of chemical treatments on the physical properties of non-woven jute/PLA bio-composites[J]. Bio-Resources, 2015, 10(4):7386-7404.
[4] 范芳维, 刘拯, 陈益人, 等. 棕榈纤维的制备及基本性能测试[J]. 针织工业, 2021(11):26-28.
FAN Fangwei, LIU Zheng, CHEN Yiren, et al. Preparation and properties study of palm fiber[J]. Knitting Industris, 2021(11): 26-28.
[5] 张毅, 高金霞, 戴鸽. 棕叶纤维的精细化加工及性能[J]. 印染助剂, 2019, 36(3):45-47.
ZHANG Yi, GAO Jinxia, DAI Ge. Refining and properties of palm leaf fiber[J]. Textile Auxiliaries, 2019, 36(3):45-47.
[6] 万玉峰, 王少松, 姜海涛. 轿车针刺非织造布外轮罩材料设计与吸声性能比较[J]. 合成纤维, 2020, 49(6):49-51.
WAN Yufeng, WANG Shaosong, JIANG Haitao. Material designs of needle punching non-woven for car wheelhouse and sound absorption performance comparisons[J]. Synthetic Fiber in China, 2020, 49(6):49-51.
[7] 董凯辉, 王习文. 硅溶胶/植物纤维吸声材料的制备及其性能研究[J]. 中国造纸, 2020, 39(8):57-61.
DONG Kaihui, WANG Xiwen. Preparation and characterization of silicasol/plant fiber sound absorbing material by foam forming[J]. China Pulp & Paper, 2020, 39(8):57-61.
[8] 王建辉, 李沛沛. 聚合物-粉煤灰陶粒多孔降噪声屏障材料制备及影响因素分析[J]. 长安大学学报(自然科学版), 2020, 40(5):27-36.
WANG Jianhui, LI Peipei. Preparation and analysis of influencing factors of polymer-fly ash aggregate porous noise reduction barrier material[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(5):27-36.
[9] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10):29-33.
SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure[J]. Journal of Textile Research, 2020, 41(10):29-33.
[10] 吴量, 刘淼, 刘学文, 等. 多层多孔吸声材料结构参数优化设计[J]. 应用声学, 2021, 40(3):449-456.
WU Liang, LIU Miao, LIU Xuewen, et al. Optimal design of structural parameters of multi-layer porous sound-absorbing materials[J]. Journal of Applied Acoustics, 2021, 40(3):449-456.
[11] 李涛, 何宇辰, 姚智敏, 等. 纤维参数对聚酯纤维板吸声性能的影响研究[J]. 功能材料, 2021, 52(6):6097-6099.
LI Tao, HE Yuchen, YAO Zhimin, et al. Effect of fiber parameter on the sound absorption property of polyester fiber panel[J]. Journal of Function Materials, 2021, 52(6): 6097-6099.
[12] RAHIMABADY M, STATHARAS E C, YAO K, et al. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption[J]. Applied Physics Letters, 2017, 111(24):241601-241602.
doi: 10.1063/1.5010743
[13] JOHNSON D L, KOPLIK J, DASHEN R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176:379-380.
doi: 10.1017/S0022112087000727
[14] 马大猷. 噪声与振动控制手册[M]. 北京: 机械工业出版社, 2002:395-398.
MA Dayou. The control of noise and oscillation[M]. Beijing: China Machine Press, 2002:395-398.
[15] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid in low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-169.
doi: 10.1121/1.1908239
[16] DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2):105-106.
doi: 10.1016/0003-682X(70)90031-9
[17] KINO N, UENO T. Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibers of various cross-sectional shapes[J]. Applied Acoustics, 2008, 69(7):575-582.
doi: 10.1016/j.apacoust.2007.02.003
[18] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2006:206-207.
MA Dayou. Theoretical basis of modern acoustics[M]. Beijing: Science Press, 2006:206-207.
[1] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[2] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[3] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[4] 王秋实, 何彩婷, 王珊, 陈美玉, 梁高勇, 孙润军. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43(08): 183-188.
[5] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[6] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[7] 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80.
[8] 贾雪飞, 庄毅, 唐毓婧, 李姗姗, 时文, 张雷, 刘明, 周江明. 层-层正交角联锁机织物及其复合材料的结构及其层切破坏机制研究[J]. 纺织学报, 2022, 43(07): 81-89.
[9] 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8.
[10] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[11] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[12] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[13] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[14] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
[15] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!