纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 65-70.doi: 10.13475/j.fzxb.20210803106

• 纺织工程 • 上一篇    下一篇

间隔织物基光热-热电复合材料的制备及其性能

李沐芳, 陈佳鑫, 曾凡佳, 王栋()   

  1. 武汉纺织大学 纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
  • 收稿日期:2021-08-04 修回日期:2022-03-18 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 王栋
  • 作者简介:李沐芳(1985—),女,教授,博士。主要研究方向为功能纤维材料。
  • 基金资助:
    国家自然科学基金项目(51873165);湖北省杰出青年基金项目(2021CFA068);湖北省高等学校优秀中青年科技创新团队项目(T2021007)

Preparation and performance of spacer fabric-based photothermal-thermoelectric composites

LI Mufang, CHEN Jiaxin, ZENG Fanjia, WANG Dong()   

  1. Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University,Wuhan, Hubei 430200, China
  • Received:2021-08-04 Revised:2022-03-18 Published:2022-10-15 Online:2022-10-28
  • Contact: WANG Dong

摘要:

为提高柔性可穿戴供能设备的热电性能,首先利用NaOH和二甲亚砜(DMSO)共同掺杂聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)制备NaOH/DMSO/PEDOT:PSS热电膜,研究了NaOH及DMSO质量分数对PEDOT:PSS电导率、塞贝克系数以及功率因数的影响;然后以棉/涤纶间隔织物为基材,通过复合NaOH/DMSO/PEDOT:PSS并涂覆ZrC/聚氨酯(PU)光热层制备光热-热电复合材料,并对复合材料的形貌结构和热电性能等进行表征。结果表明:当添加质量分数为0.5%的NaOH及3.5%的DMSO时,NaOH/DMSO/PEDOT:PSS热电膜的功率因数达到最高,为25.6 μW/(m·K2),是纯PEDOT:PSS膜的2 327倍;光热-热电复合材料的塞贝克系数为35.5 μV/K,添加ZrC/PU光热层后复合材料在光照下产生的电压为无光热层复合材料的6.3倍。

关键词: 光热材料, 热电材料, 间隔织物, 碳化锆, 聚氨酯, 聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸, 柔性可穿戴供能设备

Abstract:

In order to improve the thermoelectric performance of flexible wearable energy supply equipment, NaOH and dimethylsulfoxide (DMSO) are used together to dope poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)to prepare NaOH/DMSO/PEDOT:PSS thermoelectric film, and the influence of NaOH and DMSO concentration on the conductivity, Seebeck coefficient and power factor of PEDOT:PSS were studied. Cotton/polyester spacer fabric was used as the substrate, and the photothermal-thermoelectric composite thermoelectric material was prepared by compounding NaOH/DMSO/PEDOT:PSS and coating ZrC/polyurethane (PU) photothermal layer, and the morphology, structure and thermoelectric properties of the composites were characterized. The results show that when 0.5% NaOH and 3.5% DMSO are added, the power factor of NaOH/DMSO/PEDOT:PSS thermoelectric film reaches the peak value of 25.6 μW/(m·K2), which is 2 327 times that of pure PEDOT:PSS film. The Seebeck coefficient of the photothermal-thermoelectric composite material is 35.5 μV/K, and the voltage generated by the thermoelectric composite material under illumination after adding the photothermal layer is 6.3 times that of the thermoelectric composite material without a photothermal layer.

Key words: photothermal material, thermoelectric material, spacer fabric, ZrC, polyurethane, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), flexible wearable energy supply equipment

中图分类号: 

  • TB34

图1

NaOH掺杂质量分数对PEDOT:PSS热电膜塞贝克系数、电导率及功率因数的影响"

图2

DMSO质量分数对PEDOT:PSS热电膜塞贝克系数、电导率及功率因数的影响"

图3

间隔织物基光热-热电复合材料的形貌图"

图4

间隔织物基光热-热电复合材料的热电性能"

图5

光照下光热-热电复合材料的电压输出情况及热电单元串联结构"

[1] GAO J Y G, SHANG K Z, DING Y C, et al. Material and configuration design strategies towards flexible and wearable power supply devices: a review[J]. Journal of Materials Chemistry A, 2021, 9: 8950-8965.
doi: 10.1039/D0TA11260G
[2] KIM C S, LEE G S, CHOI H, et al. Structural design of a flexible thermoelectric power generator for wearable applications[J]. Applied Energy, 2018, 214: 131-138.
doi: 10.1016/j.apenergy.2018.01.074
[3] 张雪飞, 李婷婷, 许炳铨, 等. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(2): 174-179.
ZHANG Xuefei, LI Tingting, XU Bingquan, et al. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization[J]. Journal of Textile Research, 2021, 42(2): 174-179.
[4] FAN X, NIE W, TSAI H, et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications[J]. Advanced Science, 2019. DOI: 10.1002/advs.201900813.
doi: 10.1002/advs.201900813
[5] KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12: 719-723.
doi: 10.1038/nmat3635 pmid: 23644522
[6] KIM N, KANG H, LEE J H, et al. Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method[J]. Advanced Materials, 2015, 27: 2317-2323.
doi: 10.1002/adma.201500078
[7] DENG W, DENG L, LI Z, et al. Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid[J]. ACS Applied Materials and Interfaces, 2021, 13: 12131-12140.
doi: 10.1021/acsami.1c01059
[8] QU S, CHEN Y, SHI W, et al. Cotton-based wearable poly(3-hexylthiophene) electronic device for thermoelectric application with cross-plane temperature gradient[J]. Thin Solid Films, 2018, 667: 59-63.
doi: 10.1016/j.tsf.2018.09.046
[9] DU Y, CAI K F, CHEN S, et al. Thermoelectric fabrics: toward power generating clothing[J]. Scientific Reports, 2015. DOI: 10.1038/srep06411.
doi: 10.1038/srep06411
[10] SUN T, ZHOU B, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020. DOI: 10.1038/s41467-020-14399-6.
doi: 10.1038/s41467-020-14399-6
[11] WEIJTENS C, ELSBERGEN V, KOK M, et al. Effect of the alkali metal content on the electronic properties of PEDOT:PSS[J]. Organic Electronics, 2005, 6 (2): 97-104.
doi: 10.1016/j.orgel.2005.02.005
[12] PARK H, LEE S H, KIM F S, et al. Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process[J]. Journal Materials Chemistry A, 2014, 2: 6532-6539.
doi: 10.1039/C3TA14960A
[13] 李晓英, 蒋高明, 马丕波, 等. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016, 37(7): 66-70.
LI Xiaoying, JIANG Gaoming, MA Pibo, et al. Knitting processes and properties of three-dimensional computer flat-knitted spacer fabrics[J]. Journal of Textile Research, 2016, 37(7): 66-70.
[14] KARAMI M, AKHAVAN-BAHABADI M A, DEHKORDI M R, et al. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation[J]. Solar Energy Materials and Solar Cells, 2016, 144: 136-142.
doi: 10.1016/j.solmat.2015.08.018
[1] 谢子文, 李家炜, 汪芬萍, 戚栋明, 严小飞, 朱晨凯, 赵磊, 何贵平. 有机硅改性水性聚氨酯丙烯酸酯杂化胶乳的制备及其在涂料印花中的应用[J]. 纺织学报, 2022, 43(08): 119-125.
[2] 杨文博, 张傲洁, 刘幽燕, 李青云. 聚氨酯泡沫固定化生物体系对活性蓝4的吸附脱色[J]. 纺织学报, 2022, 43(08): 132-139.
[3] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[4] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54.
[5] 戚栋明, 樊高晴, 虞一浩, 符晔, 张艳, 陈智杰. 蓖麻油基紫外光固化水性涂料墨水制备及其印花性能[J]. 纺织学报, 2022, 43(05): 26-31.
[6] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[7] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[8] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[9] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[10] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[11] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[12] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[13] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[14] 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101.
[15] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!