纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 89-96.doi: 10.13475/j.fzxb.20210905708

• 染整与化学品 • 上一篇    下一篇

微喷印原电池置换成型织物基柔性导电线路的影响因素研究

肖渊1,2(), 李倩1, 张威1, 胡汉春1, 郭鑫雷1   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2021-09-15 修回日期:2022-03-17 出版日期:2022-10-15 发布日期:2022-10-28
  • 作者简介:肖渊(1975—),男,教授,博士。主要研究方向为微滴喷射打印、智能纺织品。E-mail: xiaoyuanjidian@xpu.edu.cn
  • 基金资助:
    西安工程大学研究生创新基金项目(chx2021006);西安市现代智能纺织装备重点实验室资助项目(2019220614SYS021CG043)

Influencing factors on flexible fabric-based electrical circuit formation by micro-jet printed primary cell replacement deposition

XIAO Yuan1,2(), LI Qian1, ZHANG Wei1, HU Hanchun1, GUO Xinlei1   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2021-09-15 Revised:2022-03-17 Published:2022-10-15 Online:2022-10-28

摘要:

针对目前智能纺织品中柔性导电线路制备工艺复杂、成本高、与纺织品融合度低等问题,提出了微喷印原电池置换成型织物基导电线路的制备方法。利用搭建的压电式微滴喷射系统,对沉积过程中硝酸银和抗坏血酸反应物浓度、反应物质量及原电池阳极基板的选择对成型导线微观形貌及方阻的影响进行研究。结果表明:在稳定喷射条件下,通过微喷印原电池置换沉积法可制备织物基导电线路;当硝酸银溶液、抗坏血酸溶液质量浓度分别为0.5 g/mL和0.3 g/mL、硝酸银打印层数为4层、织物与抗坏血酸溶液质量比为1∶2时,成型银导线方阻为 0.047 8 Ω/□, 标准偏差为0.009 138 Ω/□;当基板为铜时,在织物基底表面形成了均匀且致密的银层,银颗粒粒径较大,此时测得银导线方阻均值及标准偏差较小。

关键词: 智能纺织品, 微滴喷射, 原电池置换沉积, 柔性电路, 硝酸银

Abstract:

In view of the problems of complicated process, high cost, poor integration with textiles existing in the preparation of flexible electrical circuits in smart textiles, a method of micro-jet printing primary cell replacing deposit fabric-based electrical circuits is proposed. Based on the use of the piezoelectric micro-droplet ejection system, the effects of the concentration and mass of silver nitrate and ascorbic acid and the selection of anode substrate on morphology and square resistance for the formed circuits were studied. The results show that under stable ejection conditions, the fabric-based electrical circuits can be prepared using the proposed method. When the mass concentration of silver nitrate solution is 0.5 g/mL and that of ascorbic acid is 0.3 g/mL, the number of silver nitrate printing layers is 4, and the mass ratio of fabric to ascorbic acid solution is 1∶2, the obtained square resistance and standard deviation of the formed silver circuits are 0.047 8 Ω/□ and 0.009 138 Ω/□, respectively. When copper was applied for the base board, the silver layers on the surface of fabric substrate are uniform and dense with large silver particle size, and the average square resistance and variance of the obtained silver circuits became smaller.

Key words: smart textile, micro-droplet jetting, primary cell replacement deposition, flexible circuit, silver nitrate

中图分类号: 

  • TH16

图1

压电式微滴喷射系统"

图2

微喷印原电池置换沉积成型银导线原理"

图3

硝酸银溶液稳定喷射过程"

表1

试验方案"

方案
编号
硝酸银溶
液质量
浓度/
(g·mL-1)
抗坏血酸
溶液质
浓度/
(g·mL-1)
硝酸银溶
液打印层
织物与抗
坏血酸溶
液质量比
金属基板
类型
1 0.1~0.9 0.3 4 1∶2 铜箔
2 0.5 0~0.5 4 1∶2 铜箔
3 0.5 0.3 1~6 1∶2 铜箔
4 0.5 0.3 4 1∶1~1∶4 铜箔
5 0.5 0.3 4 1∶2 无基板、
铜箔、锌
箔、锡箔

图4

不同沉积工艺条件成型银导线"

图5

不同质量浓度硝酸银溶液成型银导线SEM照片"

图6

不同质量浓度硝酸银溶液成型银导线方阻"

图7

不同质量浓度抗坏血酸溶液成型银导线SEM照片"

图8

不同质量浓度抗坏血酸溶液成型银导线方阻"

图9

不同硝酸银溶液打印层数成型银导线SEM照片"

图10

不同硝酸银溶液打印层数成型银导线方阻"

图11

织物与抗坏血酸溶液不同质量比下银导线(SEM照片)"

图12

织物与抗坏血酸溶液不同质量比下成型银导线方阻"

图13

不同金属基板成型银导线SEM照片"

图14

不同金属基板织物表面成型银导线方阻"

[1] RAMLOW H, ANDRADE K L, IMMICH A P S. Smart textiles: an overview of recent progress on chromic textiles[J]. Journal of The Textile Institute, 2021, 112: 152-171.
doi: 10.1080/00405000.2020.1785071
[2] PERSSON N K, MARTINEZ J G, ZHONG Y, et al. Actuating textiles: next generation of smart textiles[J]. Advanced Materials Technologies, 2018. DOI: 10.1002/admt.201700397.
doi: 10.1002/admt.201700397
[3] SCATAGLINI S, ANDREONI G, GALLANT J. Smart clothing design issues in military applications[J]. Advances in Human Factors in Wearable Technologies and Game Design, 2019, 795: 158-168.
[4] ARQUILLA K, WEBB A K, ANDERSON A P. Textile electrocardiogram (ecg) electrodes for wearable health monitoring[J]. Sensors, 2020, 20(4): 1013.
doi: 10.3390/s20041013
[5] LIU M, PU X, JIANG C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201703700.
doi: 10.1002/adma.201703700
[6] JOSHI M, ADAK B. Advances in nanotechnology based functional, smart and intelligent textiles: a review[J]. Reference Module in Materials Science and Materials, 2018. DOI: 10.1016/B978-0-12-803581-8.10471-0.
doi: 10.1016/B978-0-12-803581-8.10471-0
[7] 孙婉, 缪旭红, 王晓雷, 等. 基于经编间隔织物的压力电容传感器特性[J]. 纺织学报, 2019, 40(2): 94-99.
SUN Wan, MIAO Xuhong, WANG Xiaolei, et al. Characteristics of capacitive pressure sensor based on warp-knitted spacer fabric[J]. Journal of Textile Research, 2019, 40(2): 94-99.
[8] SOURI H, BHATTACHARYYA D. Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity[J]. Sensors and Actuators A: Physical, 2019, 285: 142-148.
doi: 10.1016/j.sna.2018.11.008
[9] YANG Y, WEI X, ZHANG N, et al. A non-printed integrated-circuit textile for wireless theranostics[J]. Nature Communications, 2021, 12: 4876.
doi: 10.1038/s41467-021-25075-8 pmid: 34385436
[10] IEZZI B, ANKIREDDY K, TWIDDY J, et al. Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors[J]. Applied Energy, 2017, 208: 758-765.
doi: 10.1016/j.apenergy.2017.09.073
[11] MAHESHWARI N, ABD-ELLAH M, GOLDTHORPE I A. Transfer printing of silver nanowire conductive ink for e-textile applications[J]. Flexible and Printed Electronics, 2019. DOI: 10.1088/2058-8585/ab2543.
doi: 10.1088/2058-8585
[12] 肖渊, 尹博, 李岚馨, 等. 一种柔性电路快速成型方法: 201710007887.0[P]. 2017-06-13.
XIAO Yuan, YIN Bo, LI Lanxin, et al. A rapid prototyping method for flexible circuits: 201710007887.0[P]. 2017-06-13.
[13] BEEDASY V, SMITH P J. Printed electronics as prepared by inkjet printing[J]. Materials, 2020, 13(3): 704.
doi: 10.3390/ma13030704
[14] CHEN S P, CHIU H L, WANG P H, et al. Inkjet printed conductive tracks for printed electronics[J]. ECS Journal of Solid State Science and Technology, 2015, 4: 3026-3033.
doi: 10.1149/2.0061504jss
[15] GHAHREMANI M, BABAEI M, LATIFI M. Evaluating silver tracks conductivity on flexible surfaces[J]. Journal of Industrial Textiles, 2015, 46(2): 530-548.
doi: 10.1177/1528083715589753
[16] HU D D, ZHENG K J, YANG F, et al. Flexible electronics based on magnetic printing and the volume additive principle[J]. Journal of Materials Chemistry C, 2017, 5(32): 876-879.
[1] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[2] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[3] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[4] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[5] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[6] 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143.
[7] 王航, 王冰心, 宁新, 曲丽君, 田明伟. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(06): 189-197.
[8] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
[9] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[10] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[11] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[13] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[14] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[15] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!