纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 203-211.doi: 10.13475/j.fzxb.20210309409

• 综合述评 • 上一篇    下一篇

无机抗菌织物的研究进展

曹聪聪1, 汤龙世2, 刘元军1(), 赵晓明1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.潍坊迅纺新材料科技有限公司, 山东 潍坊 261000
  • 收稿日期:2021-03-29 修回日期:2022-07-12 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 刘元军
  • 作者简介:曹聪聪(1998—),女,硕士生。主要研究方向为多功能防护纺织品。
  • 基金资助:
    中国工程院咨询研究项目(2021DFZD1);天津市科技计划项目创新平台专项资助项目(17PTSYJC00150);中国纺织工业联合会科技指导性项目(2021012)

Research progress of inorganic antibacterial fabrics

CAO Congcong1, TANG Longshi2, LIU Yuanjun1(), ZHAO Xiaoming1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Weifang Xunfang New Material Technology Co., Ltd., Weifang, Shandong 261000, China
  • Received:2021-03-29 Revised:2022-07-12 Published:2022-11-15 Online:2022-12-26
  • Contact: LIU Yuanjun

摘要:

为深入了解无机抗菌剂的优缺点,制备性能更加优异的抗菌织物,对国内外相关研究进展进行了综述。分析了金属型和光催化型无机抗菌剂的抗菌机制,介绍了银系、铜系、锌系以及复合型的无机抗菌剂在纺织品领域的研究进展。指出:与其他类型的抗菌剂相比,无机抗菌剂具有广谱性强、不易使细菌产生耐药性等优点,但是在实际应用中也存在着一些问题,如银系抗菌剂价格昂贵;铜系抗菌剂颜色较深;锌系抗菌剂抗菌效果较弱等,通过与其他抗菌剂进行复合可以制备性能优异的复合抗菌织物,未来的研究方向应该是开发具有功能复合化、智能化、舒适性好等特性的多功能抗菌织物。

关键词: 功能性纺织品, 抗菌织物, 抗菌机制, 抗菌剂, 金属离子, 纳米粒子

Abstract:

To gain an in-depth understanding of the advantages and disadvantages of inorganic antimicrobial agents and to prepare antimicrobial fabrics with improved performance, the relevant research progress was reviewed. The antimicrobial mechanisms of metal-based and photocatalytic inorganic antimicrobial agents were briefly introduced, and the research progress of silver-based, copper-based, zinc-based, and composite inorganic antimicrobial agents in the field of textiles was mainly introduced. Compared with other types of antimicrobial agents, inorganic antimicrobial agents have the advantages in strong broad-spectrum and are not easy to make bacteria resistant, but there are some problems in practical application, including silver antimicrobial agents being expensive, copper antimicrobial agents darker, zinc antimicrobial agents weaker and so on. By compounding with other antimicrobial agents, compound antimicrobial fabrics with excellent performance are possible to be achieved. The future research direction should be the development of multi-functional antibacterial fabrics with the characteristics of functional compounding, intelligence, and good comfort.

Key words: functional textile, antibacterial fabrics, antimicrobial mechanism, antimicrobial agent, metal ion, nanoparticle

中图分类号: 

  • TS194

图1

光照条件下二氧化钛电子、空穴的产生"

图2

银-柠檬酸棉织物的制备示意图及银纳米粒子通过柠檬酸与织物的连接模式"

图3

铜/银/聚多巴胺涤纶织物合成步骤示意图"

[1] 辜经纬. 抗菌整理剂的设计合成及其在纺织品上的应用[D]. 深圳: 深圳大学, 2019: 13-14.
GU Jingwei. Design and synthesis of antibacterial finishing agents and its application on fabrics[D]. Shenzhen: Shenzhen University, 2019: 13-14.
[2] 包钰婷. 抗菌纺织品的发展现状[J]. 纺织报告, 2020, 39(8): 12-13.
BAO Yuting. Development status of antibacterial textiles[J]. Textile Reports, 2020, 39(8): 12-13.
[3] 贾琳, 王西贤, 陶文娟, 等. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(6): 14-20.
JIA Lin, WANG Xixian, TAO Wenjuan, et al. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes[J]. Journal of Textile Research, 2020, 41(6): 14-20.
[4] 麻晓霞, 裴阳阳, 雷云, 等. 负载型无机抗菌材料的研究进展[J]. 功能材料, 2017, 48 (9): 9038-9042.
MA Xiaoxia, PEI Yangyang, LEI Yun, et al. Research progress of supported inorganic antibacterial mater-ials[J]. Journal of Functional Materials, 2017, 48(9): 9038-9042.
[5] 孙晓萱, 高建新, 李杭, 等. 金属抗菌机理的研究进展[J]. 功能材料, 2020, 51(9): 9066-9071.
SUN Xiaoxuan, GAO Jianxin, LI Hang, et al. Research progress on antimicrobial mechanism of metals[J]. Journal of Functional Materials, 2020, 51(9): 9066-9071.
[6] ZHANG S, YANG C, REN G, et al. Study on behaviour and mechanism of Cu2+ion release from Cu bearing antibacterial stainless steel[J]. Materials Technology, 2015, 30(B2): B126-B132.
doi: 10.1179/1753555714Y.0000000236
[7] 裴阳阳. Cu2+/ZnO负载型抗菌材料的制备及抗菌性能研究[D]. 银川: 宁夏大学, 2017: 17-19.
PEI Yangyang. Preparation and antibacterial properties of Cu2+/ZnO supported antibacterial materials[D]. Yinchuan: Ningxia University, 2017: 17-19.
[8] 王晓岚. 金属离子的抗菌性能及其抗菌机理研究[D]. 广州: 华南理工大学, 2015: 19-22.
WANG Xiaolan. Study on antibacterial activity and mechanism of metal ions[D]. Guangzhou: South China University of Technology, 2015: 19-22.
[9] 王小娟. 抗菌剂的种类及其在纺织品上的应用[J]. 纺织科技进展, 2017(6): 21-24.
WANG Xiaojuan. Types of antibacterial agents and their application in textiles[J]. Progress in Textile Science & Technology, 2017(6): 21-24.
[10] 马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造, 2016, 35(1): 5-9.
MA Chao, WU Ying. Antibacterial mechanism of antibacterial agents[J]. China Brewing, 2016, 35(1): 5-9.
[11] 陈美梅, 郭荣辉. 抗菌材料的研究进展[J]. 纺织科学与工程学报, 2019, 36(1): 153-157.
CHEN Meimei, GUO Ronghui. Research progress of antibacterial materials[J]. Journal of Textile Science and Engineering, 2019, 36(1): 153-157.
[12] 龚兰轩. Cu/ZnO-SiO2复合抗菌改性聚酯纤维的制备及其性能研究[D]. 上海: 东华大学, 2020: 15-16.
GONG Lanxuan. Preparation and properties of Cu/ZnO-SiO2 composite antibacterial modified polyester fiber[D]. Shanghai: Donghua University, 2020: 15-16.
[13] 王瑶, 王瑜, 程昱, 等. 纳米银粒径与抗细菌性能的关系[J]. 中国皮革, 2016, 45(5):1-4.
WANG Yao, WANG Yu, CHENG Yu, et al. Antibacterial properties of different sizes of nano- sliver to bacteria[J]. China Leather, 2016, 45(5): 1-4.
[14] SHE B X, WAN X J, TANG J N, et al. Size-and morphology-dependent antibacterial properties of cuprous oxide nanoparticle and their synergistic antibacterial effect[J]. Science of Advanced Materials, 2016, 8(5): 1074-1078.
doi: 10.1166/sam.2016.2696
[15] 金万慧, 梅帆, 何力. 纳米银抗菌防臭纺织品的检测及银的释放行为[J]. 印染助剂, 2021, 38(12): 57-60.
JIN Wanhui, MEI Fan, HE Li. Release of nano sliver in the antibacterial and deodorization textiles[J]. Textile Auxiliaries, 2021, 38(12): 57-60.
[16] UREYEN M E, ASLAN C. Determination of silver release from antibacterial finished cotton and polyester fabrics into water[J]. Journal of The Textile Institute, 2017, 108(7): 1128-1135.
[17] 张艳艳, 詹璐瑶, 王培, 等. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
ZHANG Yanyan, ZHAN Luyao, WANG Pei, et al. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles[J]. Journal of Textile Research, 2020, 41(11): 174-180.
doi: 10.1177/004051757104100215
[18] 崔继方, 吴卫华. 银系无机抗菌剂的发展及应用研究[J]. 陶瓷, 2016(9): 9-12.
CUI Jifang, WU Weihua. Development of Ag-type inorganic antibacterial agents and its application[J]. Ceramics, 2016(9):9-12.
[19] 徐思峻. 载银粘胶纤维的制备及其吸附释放性能研究[D]. 苏州: 苏州大学, 2013: 5-9.
XU Sijun. Fabrication of silver treated viscose fiber and evaluation of their adsorption and release proper-ties[D]. Suzhou: Soochow University, 2013: 5-9.
[20] 沈金科. 抗菌PTT纤维的制备及性能研究[D]. 杭州: 浙工理工大学, 2014: 4-5.
SHEN Jinke. Preparation and properties studies of antibacterial poly(trimethylene terephthalate) fila-ment[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 4-5.
[21] 朱炯霖, 李红, 秦圆, 等. 棉织物的纳米银多功能整理[J]. 精细化工, 2020, 37(6): 1274-1281.
ZHU Jionglin, LI Hong, QIN Yuan, et al. Nanosilver multifunctional finishing of cotton fabric[J]. Fine Chemicals, 2020, 37(6): 1274-1281.
[22] 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(3): 188-196.
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond[J]. Journal of Textile Research, 2020, 41(3): 188-196.
[23] ZHANG D S, CHEN L, ZANG C F, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262
[24] WU Y P, YANG Y, ZHANG Z J, et al. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles[J]. Textile Research Journal, 2019, 89(5): 867-880.
doi: 10.1177/0040517518758002
[25] 孙通, 李双燕, 崔振华, 等. 真丝织物的氯菊酯纳米银抗菌整理[J]. 印染, 2021, 47(2): 12-16.
SUN Tong, LI Shuangyan, CUI Zhenhua, et al. Antibacterial finishing of silk fabric with permethrin-capped nano-silver[J]. China Dyeing & Finishing, 2021, 47(2): 12-16.
[26] 张艳, 姚平, 周谨, 等. 纳米银粒子的原位合成及对真丝织物的功能化整理[J]. 上海纺织科技, 2018, 46(9): 18-20,28.
ZHANG Yan, YAO Ping, ZHOU Jin, et al. Insitu synthesis of silver nanoparticles and its application for silk functionalization[J]. Shanghai Textile Science & Technology, 2018, 46(9): 18-20,28.
[27] RUPARELIA J R, CHATTERIEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia, 2008, 4(3): 707-716.
doi: 10.1016/j.actbio.2007.11.006 pmid: 18248860
[28] REN G G, HU D W, CHENG E W C, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications[J]. International Journal of Antimicrobial Agents, 2009, 33(6): 587-590.
doi: 10.1016/j.ijantimicag.2008.12.004 pmid: 19195845
[29] ALZAHRANI K E, NIAZY A A, ALSWIELEH A M, et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles[J]. International Journal of Nanomedicine, 2018, 13: 77-87.
doi: 10.2147/IJN.S154218 pmid: 29317817
[30] WU W T, ZHAO W J, WU Y H, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019, 465: 279-287.
doi: 10.1016/j.apsusc.2018.09.184
[31] VALODKAR M, MODI S, PAL A, et al. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach[J]. Materials Research Bulletin, 2011, 46(3): 384-389.
doi: 10.1016/j.materresbull.2010.12.001
[32] KUDZIN M H, MROZINSKA Z, KACZMAREK A, et al. Deposition of copper on poly(lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials[J]. Materials, 2020. DOI:10.3390/ma13183971.
doi: 10.3390/ma13183971
[33] 槐向兵, 黄磊. 铜离子改性聚丙烯腈织物的抗菌性能研究[J]. 棉纺织技术, 2019, 47(3): 31-34.
HUAI Xiangbing, HUANG Lei. Antibacterial property study of copper modified polyacrylonitrile fabric[J]. Cotton Textile Technology, 2019, 47(3): 31-34.
[34] XU Q B, GU J Y, ZHAO Y, et al. Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and silver nanoparticles[J]. Fibers and Polymers, 2017, 18(11): 2204-2211.
doi: 10.1007/s12221-017-7567-z
[35] XU Q B, DUAN P P, ZHANG Y Y, et al. Double protect copper nanoparticles loaded on lcysteine modified cotton fabric with durable antibacterial properties[J]. Fibers and Polymers, 2018, 19(11): 2324-2334.
doi: 10.1007/s12221-018-8621-1
[36] TURAKHIA B, DIVAKARA M B, SANTOSH M S, et al. Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles[J]. Journal of Coatings Technology and Research, 2020, 17(2): 531-540.
doi: 10.1007/s11998-019-00303-5
[37] 周馨悦, 徐井华, 刘星雨, 等. 纳米氧化锌在抗菌材料中的应用[J]. 云南化工, 2019, 46(4): 144-145.
ZHOU Xinyue, XU Jinghua, LIU Xingyu, et al. Application of nano zinc oxide in antimicrobial mater-ials[J]. Yunnan Chemical Technology, 2019, 46(4): 144-145.
[38] KUMAR R, UMAR A, KUMAR G, et al. Antimicrobial properties of ZnO nanomaterials: a review[J]. Ceramics International, 2017, 43(5): 3940-3961.
doi: 10.1016/j.ceramint.2016.12.062
[39] GHARPURE S, ANKAMWAR B. Synthesis and Antimicrobial properties of Zinc oxide nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 5977-5996.
doi: 10.1166/jnn.2020.18707 pmid: 32384943
[40] KEAWKHONG N, SRIPANOM L, KAEWCHUAY N, et al. Synthesis and characterisation of ZnO nanoparticles for production of antimicrobial textiles[J]. Advanced Materials Research, 2015, 1131: 75-78.
doi: 10.4028/www.scientific.net/AMR.1131.75
[41] 冯俊丹, 崔振华, 程德亮, 等. 纳米氧化锌对黏胶织物的抗菌防紫外整理研究[J]. 针织工业, 2020(11): 24-28.
FENG Jundan, CUI Zhenhua, CHENG Deliang, et al. Antibacterial and UV-resistant finishing of viscose fabric with nano-ZnO[J]. Knitting Industries, 2020(11): 24-28.
[42] NOORIAN S A, HEMMATINEJAD N, NAVARRO J A R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities[J]. International Journal of Biological Macromolecules, 2020, 154: 1215-1226.
doi: S0141-8130(19)36606-1 pmid: 31730954
[43] 李丽艳, 郑敏, 常朱宁子, 等. 纳米氧化锌原位改性涤纶染色及抗菌性能研究[J]. 针织工业, 2020(12): 36-39.
LI Liyan, ZHENG Min, CHANG Zhuningzi, et al. Dyeing and anti-bacterial properties of in-situ modified polyester with nano-zinc oxide[J]. Knitting Industries, 2020(12): 36-39.
[44] AGRAWAL N, TAN J S J, LOW P S, et al. Green synthesis of robust superhydrophobic antibacterial and UV-blocking cotton fabrics by a dual-stage silanization approach[J]. Advanced Materials Interfaces, 2019. DOI:10.1002/admi.201900032.
doi: 10.1002/admi.201900032
[45] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[46] 孙璇. 疏水性纤维的石墨烯整理及其表面功能化[D]. 天津: 天津工业大学, 2019: 3-4.
SUN Xuan. Graphene finishing and surface functionalization of hydrophobic fibers[D]. Tianjin: Tiangong University, 2019: 3-4.
[47] 张勇, 李桢. 石墨烯及氧化石墨烯在纺织领域的抗菌应用[J]. 棉纺织技术, 2020, 48(9): 75-79.
ZHANG Yong, LI Zhen. Antibacterial application of graphene and graphene oxide in textile field[J]. Cotton Textile Technology, 2020, 48(9): 75-79.
[48] 黄小云, 陈林云, 吴玉峰, 等. 天然抗菌防螨针织面料的开发[J]. 针织工业, 2018(6): 27-30.
HUANG Xiaoyun, CHEN Linyun, WU Yufeng, et al. Development of natural antibacterial anti-mite knitted fabric[J]. Knitting Industries, 2018(6): 27-30.
[49] OUADIL B, AMADINE O, ESSAMLALI Y, et al. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019. DOI:10.1016/j.colsurfa.2019.123713.
doi: 10.1016/j.colsurfa.2019.123713
[50] 梁小玲. 高性能石墨烯材料在纺织领域的应用进展[J]. 纺织科技进展, 2020(7):26-29.
LIANG Xiaoling. Application progress of high-performance graphene materials in textile field[J]. Progress in Textile Science & Technology, 2020(7): 26-29.
[51] 卜聃琳. 高分子改性氧化石墨烯及其水凝胶复合材料的制备和抗菌性能研究[D]. 长春: 长春工业大学, 2021: 5-6.
BU Danlin. Preparation and antibacterial properties of polymer modified graphene oxide and itshydrogel composites[D]. Changchun: Changchun University of Technology, 2021: 5-6.
[52] YAGHOUBIDOUST F, SALIMI E. A simple method for the preparation of antibacterial cotton fabrics by coating graphene oxide nanosheets[J]. Fibers and Polymers, 2019, 20(6): 1155-1160.
doi: 10.1007/s12221-019-8540-1
[53] GAO N, CHEN Y J, JIANG J. Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11307-11314.
[54] YU W, LI X, HE J X, et al. Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles[J]. Journal of Colloid and Interface Science, 2021, 584:164-173.
doi: 10.1016/j.jcis.2020.09.092 pmid: 33069016
[55] ANSARI M, SAJJADI S A, SAHEBIAN S, et al. Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics[J]. Chemistry Select, 2020, 5(27): 8370-8378.
[56] WANG K, MA Q, ZHANG Y M, et al. Ag NPs-assisted synthesis of stable Cu NPs on PET fabrics for antibacterial and electromagnetic shielding performance[J]. Polymers, 2020. DOI:10.3390/polym12040783.
doi: 10.3390/polym12040783
[1] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[2] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[3] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[4] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[5] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[6] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[7] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[8] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[9] 王志辉, 徐羽菲, 郭豪玉, 张康磊, 庞星辰, 聂小林, 诸葛健, 魏取福. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196.
[10] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
[11] 张姣姣, 李雨洋, 刘云, 董朝红, 朱平. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(07): 31-38.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[13] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[14] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[15] 曾玉晖, 张亭亭, 王克作, 何力, 陈益人. 天然彩棉后整理加工中颜色稳定性的影响因素[J]. 纺织学报, 2020, 41(08): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .