纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 131-137.doi: 10.13475/j.fzxb.20210702407
AN Yijin1,2, XUE Wenliang1,2(), DING Yi1,2, ZHANG Shunlian3
摘要:
为解决目前纺织品色牢度人工评级方式的主观性和繁重工作量,结合深度学习与传统纺织检测,以纺织品检测中的纺织品色牢度评级为对象,研究基于图像处理和深度学习的智能评级创新方法。针对场景与问题,选择利用图像处理技术进行采样图像的预处理和分割,在小样本、多分类的实际条件下搭建数据库,利用深度学习完成对摩擦沾色试样色牢度的迅速评级。结果表明,所选择的图像处理技术对图像的处理效果良好,对后续深度学习准确率的提高有辅助效果;深度学习对耐摩擦沾色试样色牢度的评级准确率达到87.5%,高效、客观且准确率高,实现评级操作简易化,利用神经网络达到代替人眼评级过程,提高准确度和改善目前方法的不足。
中图分类号:
[1] | 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006:5. |
YU Weidong. Textile materials science[M]. Beijing: China Textile & Apparel Press, 2006:5. | |
[2] | 魏金玉, 商素平. 谈如何保持色牢度评级目光的准确和稳定[J]. 科技前沿, 2008(4):56-57. |
WEI Jinyu, SHANG Suping. Talk about how to maintain the accuracy and stability of the color fastness ratings[J]. Frontiers of Science and Technology, 2008(4):56-57. | |
[3] | 柳淑英. 纺织品—色牢度实验A02部分:颜色变化评定灰色标度[J]. 标准化报道, 1996(6):62-63. |
LIU Shuying. Textiles-color fastness experiment part A02: evaluation of gray scale for color cange[J]. Standardization Report, 1996(6): 62-63. | |
[4] | 章秋平. GB/T 3920与AATCC 8试验方法之比较[J]. 纺织标准与质量, 2007(1):40-41. |
ZHANG Qiuping. Comparison of GB/T 3920 and AATCC 8 test methods[J]. Textile Standards and Quality, 2007(1): 40-41. | |
[5] | 孔凡明, 张广丽. 色差定量分析与色牢度仪器评级的探讨[J]. 中国纤检, 2004(11):18-19,26. |
KONG Fanming, ZHANG Guangli. Quantitative analysis of color difference and discussion of color fastness instrument rating[J]. China Fiber Inspection, 2004(11):18-19,26. | |
[6] | 刘蒙蒙, 杨汝慧, 李姗姗. 纺织品耐摩擦色牢度试验方法改进研究[J]. 山东纺织科技, 2020, 61(5):31-32. |
LIU Mengmeng, YANG Ruhui, LI Shanshan. Research on improvement of textile color fastness to rubbing[J]. Shandong Textile Science and Technology, 2020, 61(5): 31-32. | |
[7] | 张向丽, 刘锦瑞, 孙丽霞, 等. 纺织品色牢度自动评级系统性能的研究[J]. 现代纺织技术, 2019, 27(6):86-90. |
ZHANG Xiangli, LIU Jinrui, SUN Lixia, et al. Research on the performance of textile color fastness automatic rating system[J]. Advanced Textile Technology, 2019, 27(6): 86-90. | |
[8] | 胡梦坤, 岑琴, 郭霞. 色牢度目测评级与仪器评级的探讨[J]. 农业科技与装备, 2019(2):84-85. |
HU Mengkun, CEN Qin, GUO Xia. Discussion on visual evaluation of color fastness and instrument evaluation[J]. Agricultural Science and Technology and Equipment, 2019(2): 84-85. | |
[9] | 张勇, 车江宁. 纺织品色差和色牢度的数码影像技术评级[J]. 印染, 2011, 37(21):37-40. |
ZHANG Yong, CHE Jiangning. Digital imaging technology rating of textile color difference and color fastness[J]. China Dyeing & Finishing, 2011, 37(21): 37-40. | |
[10] | 邵金鑫, 张宝昌, 曹继鹏. 基于图像处理与深度学习方法的棉纤维梳理过程纤维检测识别技术[J]. 纺织学报, 2020, 41(7):40-46. |
SHAO Jinxin, ZHANG Baochang, CAO Jipeng. Fiber detection and recognition technology for cotton fiber carding process based on image processing and deep learning methods[J]. Journal of Textile Research, 2020, 41(7): 40-46. | |
[11] | 朱安民, 张艺, 李观强. 基于计算机视觉的纺织品色牢度检测[J]. 深圳大学学报(理工版), 2018, 35(4):420-425. |
ZHU Anmin, ZHANG Yi, LI Guanqiang. Textile color fastness detection based on computer vision[J]. Journal of Shenzhen University (Science and Technology Edition), 2018, 35(4): 420-425. | |
[12] | 孙芳. 纺织品色牢度及色差智能判别装置的可行性研究[J]. 中国纤检, 2017(10):86-87. |
SUN Fang. The feasibility study of an intelligent discrimination device for textile color fastness and color difference[J]. China Fiber Inspection, 2017(10): 86-87. | |
[13] | 张思萌. 印染织物色牢度测试过程中应注意的问题[J]. 四川纺织科技, 2002(6):47. |
ZHANG Simeng. Issues that should be paid attention to in the process of testing the color fastness of printed and dyed fabrics[J]. Sichuan Textile Technology, 2002(6):47. | |
[14] | 宋丛珊. 纺织品色牢度评定分析系统的开发与探讨[J]. 湖北农机化, 2012(4):55-57. |
SONG Congshan. Development and discussion of textile color fastness evaluation and analysis system[J]. Hubei Agricultural Mechanization, 2012(4):55-57. | |
[15] | 孙飞, 张胜文, 方喜峰. 纺织品色牢度计算机辅助测试系统的研制[J]. 自动化与仪表, 2007(2):70-73. |
SUN Fei, ZHANG Shengwen, FANG Xifeng. Development of a computer-aided testing system for textile color fastness[J]. Automation and Instrumentation, 2007(2): 70-73. | |
[16] | 刘锦瑞, 袁园园, 张向丽, 等. 纺织品色牢度智能评级系统的研制[J]. 棉纺织技术, 2019, 47(5):41-44. |
LIU Jinrui, YUAN Yuanyuan, ZHANG Xiangli, et al. Development of an intelligent rating system for textile color fastness[J]. Cotton Textile Technology, 2019, 47(5): 41-44. | |
[17] |
FENG Chung, KUO Jeffrey, SHIH Chun-Yang, et al. Color and pattern analysis of printed fabric by an unsupervised clustering method[J]. Textile Research Journal, 2005, 75(1):9-12.
doi: 10.1177/004051750507500103 |
[18] |
SHIH Peichung, LIU Chengjun. Comparative assessment of content-based face image retrieval in different color spaces[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(7):873-893.
doi: 10.1142/S0218001405004381 |
[19] |
WEE G Alvin, DELWIN T Lindsey, KUO Shanglun, et al. Color accuracy of commercial digital cameras for use in dentistry[J]. Dental Materials, 2005, 22(6):553-559.
doi: 10.1016/j.dental.2005.05.011 |
[20] | XU Dongliang, TIAN Zhihong, LAI Rufeng, et al. Deep learning based emotion analysis of microblog texts[J]. Information Fusion, 2020, 64:69-71. |
[21] |
SALMON Landi. Comment on ″Kubelka-Munk function″-Ceram. int. 47 (2021) 8218-8227 and ″Kubelka-Munk equation″-Ceram. int. 47 (2021) 13980-13993[J]. Ceramics International, 2021, 47(19):28055-28055.
doi: 10.1016/j.ceramint.2021.06.103 |
[22] | ALI Moussa. Textile color formulation using linear programming based on Kubelka-Munk and Duncan theories[J]. Color Research & Application, 2021, 46(5): 1046-1056. |
[23] | WU Jie, TANG Tang, CHEN Ming, et al. A Study on adaptation lightweight architecture based deep learning models for bearing fault diagnosis under varying working conditions[J]. Expert Systems with Applications, 2020, 160:53-55. |
[24] | MEIJS Midas, MEIJER Frederick J A, PROKOP Mathias, et al. Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning[J]. Medical image analysis, 2020, 66:112-114. |
[25] | 王彬, 高嘉平, 司耸涛. 基于卷积神经网络的图像分类及应用[J]. 电子与封装, 2021, 21(5):76-80. |
WANG Bin, GAO Jiaping, SI Songtao. Image classification and application based on convolutional neural network[J]. Electronics and Packaging, 2021, 21(5): 76-80. | |
[26] | 钱立辉, 王斌, 郑云飞, 等. 基于图像深度预测的景深视频分类算法[J]. 浙江大学学报(理学版), 2021, 48(3):282-288. |
QIAN Lihui, WANG Bin, ZHENG Yunfei, et al. Depth-of-field video classification algorithm based on image depth prediction[J]. Journal of Zhejiang Univer-sity (Science Edition), 2021, 48(3): 282-288. | |
[27] | 刘颖, 车鑫. 基于图网络优化及标签传播的小样本图像分类算法[J/OL]. 信号处理:1-11[2021-05-26]. http://kns.cnki.net/kcms/detail/11.2406.TN.20210511.1826.014.html. |
LIU Ying, CHE Xin. Small sample image classification algorithm based on graph network optimization and label propagation[J/OL]. Signal Processing: 1-11 [2021-05-26]. http://kns.cnki.net/kcms/detail/11.2406.TN.20210511.1826.014.html. |
[1] | 张东剑, 甘学辉, 杨崇倡, 韩阜益, 刘香玉, 谈渊, 廖壑, 王松林. 纺丝过程中非接触式纤维张力检测技术研究进展[J]. 纺织学报, 2022, 43(11): 188-194. |
[2] | 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160. |
[3] | 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182. |
[4] | 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73. |
[5] | 马运娇, 王蕾, 潘如如, 高卫东. 基于平面镜成像的纱线条干三维合成校准方法[J]. 纺织学报, 2022, 43(07): 55-59. |
[6] | 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169. |
[7] | 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159. |
[8] | 熊晶晶, 杨雪, 苏静, 王鸿博. 基于图像技术的织物导湿性能测试方法[J]. 纺织学报, 2021, 42(12): 70-75. |
[9] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
[10] | 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206. |
[11] | 杨争妍, 薛文良, 张传雄, 丁亦, 马颜雪. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(07): 164-168. |
[12] | 夏旭文, 孟朔, 潘如如, 高卫东. 基于改进帧间差分法的经纱撞筘拥纱在线检测[J]. 纺织学报, 2021, 42(06): 91-96. |
[13] | 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58. |
[14] | 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88. |
[15] | 唐千惠, 王蕾, 高卫东. 基于图像处理的织物保形性检测[J]. 纺织学报, 2021, 42(03): 89-94. |
|