纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 160-166.doi: 10.13475/j.fzxb.20211111307

• 服装工程 • 上一篇    下一篇

基于京剧脸谱意象色彩的服饰纹样自动配色

贾静1, 曹竟文1, 徐平华1,2,3(), 林瑞冰1, 孙晓婉1   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
  • 收稿日期:2021-11-30 修回日期:2022-05-23 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 徐平华
  • 作者简介:贾静(1998—),女,硕士生。主要研究方向为纺织品服装数字化技术。
  • 基金资助:
    国家自然科学基金青年基金项目(61702460);浙江理工大学科研业务费专项资金资助项目(2021Q057);服装设计国家级虚拟仿真实验教学中心项目(ZX20212004);浙江省服装工程技术研究中心开放基金项目(2021FZKF05);浙江理工大学优秀研究生学位论文培育基金项目(LW-YP2021053)

Automatic coloration of clothing pattern based on color parsing of Peking Opera masks

JIA Jing1, CAO Jingwen1, XU Pinghua1,2,3(), LIN Ruibing1, SUN Xiaowan1   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Clothing Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2021-11-30 Revised:2022-05-23 Published:2022-12-15 Online:2023-01-06
  • Contact: XU Pinghua

摘要:

为提升服饰纹样色彩配色效能,利用自适应颜色聚类及自动配色机制,实现基于意象场景的服饰纹样自动配色。以京剧脸谱为范例,搜集了三类角色共计150幅脸谱图像作为源图,采用分割、降噪等操作获取脸谱主体内容;利用二分K-均值聚类算法,对单一样本进行逐一自适应色彩提取,在此基础上进行二次聚类获得各角色脸谱提取色色值、占比及共现比率等特征参数;最后设计融合颜色聚类数、共现比率及目标区域特征要素的动态配色机制,开发色彩解析和纹样自动配色软件。实验结果表明,配色控制参数、源图类型、纹样形态等因素影响选色顺序及最终配色效果,实现基于意象场景的纹样色彩自动迁移,为当代服饰纹样色彩设计提供决策参考。

关键词: 自适应聚类, 色彩迁移, 京剧脸谱, 赋色机制, 意向色彩, 服饰纹样

Abstract:

In order to improve the coloration efficiency of clothing pattern design, an automatic color matching mechanism based on adaptive color clustering of scene images was proposed. 150 images of Peking Opera masks from three roles were collected as the source samples. The Peking Opera mask body of each sample image was obtained by image segmentation and denoising. The bipartite K-means clustering algorithm was utilized to extract adaptively the extracted colors of each sample. In addition, the secondary clustering was carried out to acquire the main color value, proportion and co-occurrence ratio of Peking Opera mask images. A dynamic color matching mechanism integrating the number of color clusters, co-occurrence ration and structure characteristics of the target pattern was designed. Consequently, an automatic color parsing and matching software package was developed. Results confirm that the color matching control parameters, source images, pattern shape and other factors affect the color selection sequence and the final matching effect. The proposed method can quickly achieve the pattern color migration based on the source images, and can provide reference for auxiliary decision-making on clothing pattern color design.

Key words: adaptive clustering, color transfer, Peking Opera facial mask, coloration mechanism, parsing, colthing pattern

中图分类号: 

  • TS941.2

图1

部分脸谱素材图像"

图2

样本预处理效果"

图3

二分K-均值聚类示意图"

图4

丑角意象色提取示意图"

图5

丑角系列样本主色网络关系模型"

图6

纹样1结构形态示例"

图7

不同控制参数配色效果"

图8

基于不同角色脸谱意象色的自动配色"

图9

不同角色提取色色调、饱和度、明度均方差"

表1

各角色提取色编号及其占比"

角色 输出 主色1 主色2 主色3 主色4 主色5 主色6 主色7 主色8 主色9 主色10
生角 色号 #07020C #4D220C #A77A5F #E7892E #100A11 #D893AE #48322C #722D43 #DD2C2E #715F75
占比/% 21.03 12.45 12.21 10.69 8.90 8.09 7.53 6.82 6.65 5.63
净角 色号 #05030A #3A3142 #8D89B4 #415920 #BC4E59 #E48E2F #C21316 #6A493F #DA9279 #15388D
占比/% 29.32 12.80 9.24 8.78 8.51 8.38 7.98 6.82 4.31 3.86
丑角 色号 #F1DFDA #EB9276 #0A0409 #EFC8CF #251C23 #020006 #6C4A42 #A19AB6 #080808 #8D391A
占比/% 19.96 17.47 16.88 10.76 8.45 8.05 5.82 4.75 3.96 3.90

图10

对称型纹样自动配色效果"

图11

非对称型纹样自动配色效果"

[1] STEWARD D V. The design structure system: a method for managing the design of complex systems[J]. IEEE Transactions on Engineering Management, 1981, 28(3):71-74.
[2] 刘肖健, 黄红艺, 赵露唏. 基于图像大数据的中国传统织绣色谱提取研究[C]// 2016中国色彩学术年会论文集. 北京: 文化艺术出版社, 2016:51-58.
LIU Xiaojian, HUANG Hongyi, ZHAO Luxi. Research on chromatographic extraction of traditional Chinese embroidery based on image big data[C]// .2016 Chinese Color Academic Annual Conference Collection. Beijing: Culture and Art Publishing House, 2016:51-58.
[3] 刘肖健, 曹愉静, 赵露唏. 传统纹样的色彩网络模型及配色设计辅助技术[J]. 计算机集成制造系统, 2016, 22(4):899-907.
LIU Xiaojian, CAO Yujing, ZHAO Luxi. Color networks of traditional cultural patterns and color design aiding technology[J]. Computer Integrated Manufacturing Systems, 2016, 22(4): 899-907.
[4] XU B Q, LIU X J, LU C F, et al. Transferring the color imagery from an image: a color network model for assisting color combination[J]. Color Research & Application, 2019, 44(2): 205-220.
[5] 任艳博, 蒋超, 王教庆, 等. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(5):103-108.
REN Yanbo, JIANG Chao, WANG Jiaoqing, et al. Butterfly color analysis and application based on clustering algorithm and color network[J]. Journal of Textile Research, 2021, 42(5):103-108.
[6] LIU S G, ZHANG X. Automatic grayscale image colorization using histogram regression[J]. Pattern Recognition Letters, 2012, 33(13):1673-1681.
doi: 10.1016/j.patrec.2012.06.001
[7] WU M G, CHEN T S, LV GN, et al. Identification and formalization of knowledge for coloring qualitative geospatial data[J]. Color Research & Application, 2018, 43: 198-208.
[8] DONG G P, SUN S W, WU N S, et al. Research on automatic mosaic ceramic tiling method based on color matching[J]. Ceramics International, 2021, 47(22):31451-31456.
doi: 10.1016/j.ceramint.2021.08.021
[9] HE L, QI H R, ZARETZKI R. Image color transfer to evoke different emotions based on color combina-tions[J]. Signal, Image and Video Processing, 2015, 9(8):1965-1973.
doi: 10.1007/s11760-014-0691-y
[10] 王晓宇, 朱一峰, 郗金洋, 等. 基于密集连接生成对抗网络的图像颜色迁移[J]. 液晶与显示, 2020, 35(3):272-280.
WANG Xiaoyu, ZHU Yifeng, XI Jinyang, et al. Image color transfer with dense connections generative adversarial networks[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(3):272-280.
doi: 10.3788/YJYXS20203503.0272
[11] MATEJA Marić, DRAŽEN Domijan. A neurodynamic model of the interaction between color perception and color memory[J]. Neural Networks, 2020, 129:222-248.
doi: S0893-6080(20)30221-5 pmid: 32615406
[12] 朱昱宁, 徐博群, 刘肖健. 基于交互式遗传算法的参考图像辅助配色设计[J]. 包装工程, 2020, 41(2):181-188.
ZHU Yuning, XU Boqun, LIU Xiaojian. Reference image aided color matching design based on interactive genetic alg[J]. Packaging Engineering, 2020, 41(2):181-188.
[13] 吴娅昕. 京剧脸谱及其色彩结构在服装设计中的应用研究[J]. 大众文艺, 2018(20):51.
WU Yaxin. Application of Peking Opera facial mask and its color structure in fashion design[J]. Popular Literature and Art, 2018 (20):51.
[14] 赵永岐. 中国京剧脸谱[M]. 4版. 北京: 中国书店出版社, 2012:1-208.
ZHAO Yongqi. Chinese Peking Opera facial mask[M]. 4th ed. Beijing: China Bookstore Publishing House, 2012:1-208.
[15] LUO J, YANG YS, SHI BY. Multi-threshold image segmentation of 2-D otsu based on improved adaptive differential evolution algorithm[J]. Jounal of Electronics & Information Technology, 2019, 41(8):2017-2024.
[16] 徐平华, 冒海琳, 张玉杰, 等. 民族服饰色彩构成分析方法研究[J]. 丝绸, 2019, 56(3):24-29.
XU Pinghua, MAO Hailin, ZHANG Yujie, et al. Study on analysis method for color composition of ethnic costumes[J]. Journal of Silk, 2019, 56(3):24-29.
[17] 徐明慧, 徐平华, 韦秋菊, 等. 基于网络关系模型的品牌女装配色解析[J]. 纺织学报, 2021, 42(11):137-142.
XU Minghui, XU Pinghua, WEI Qiuju, et al. Color parsing of female brand clothing based on nexus network modeling[J]. Journal of Textile Research, 2021, 42(11):137-142.
doi: 10.1177/004051757204200301
[18] 庹武, 王哓玉, 高雅昆, 等. 基于改进边缘检测算法的服装款式识别[J]. 纺织学报, 2021, 42(10):157-162.
TUO Wu, WANG Xiaoyu, GAO Yakun, et al. Clothing style identification based on improved edge detection algorithm[J]. Journal of Textile Research, 2021, 42(10):157-162.
[1] 徐强 陈东生 甘应进. 台湾排湾族服饰纹样的文化内涵解读[J]. 纺织学报, 2016, 37(12): 111-116.
[2] 刘丹丹 梁惠娥 邢乐. 清代龙袍上海水山崖纹的特征及其演变规律[J]. 纺织学报, 2014, 35(2): 62-0.
[3] 张振岳;高卫东. 解读惠安近代服饰纹样中的文化寓意[J]. 纺织学报, 2008, 29(11): 103-106.
[4] 许凡;吴秋英. 西南少数民族服饰纹样的精神显现[J]. 纺织学报, 2007, 28(10): 95-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!