纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 190-196.doi: 10.13475/j.fzxb.20210805407
DAI Jiamu, NIE Du, LI Suying, ZHANG Yu, ZHANG Wei, LIU Rong()
摘要:
为开发具有优良生物相容性、多重功能性和良好修复能力的纤维基人工神经导管支架,从原料组成、制备方法、结构设计、功能改性和细胞培养等方面对人工神经导管的研究进展进行综述,并对其未来研究方向进行分析。天然或合成聚合物及其混合材料,可通过熔融纺丝、静电纺丝、自组装等方法制备成直径不同的纤维基人工神经导管,普遍认为在中空管道中添加海绵、水凝胶或取向微孔可更好地引导细胞定向生长,并为细胞生长提供适宜的微环境;经过导电、磁性等改性或加入生长因子、信使核糖核酸(mRNA)等活性物质,可使神经导管支架更好地促进细胞增殖与分化;最后指出纤维基人工神经导管的潜在改进方向,以期进一步提高其神经修复效果。
中图分类号:
[1] | 龚超, 张玉强, 王伟. 细胞治疗周围神经损伤的作用及机制[J]. 中国组织工程研究, 2022, 26(13): 2114-2119. |
GONG Chao, ZHANG Yuqiang, WANG Wei. Role and mechanism of cell therapy in repair of peripheral nerve injury[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(13): 2114-2119. | |
[2] |
WANG J, XIONG H, ZHU T H, et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair[J]. ACS Nano, 2020, 14(10): 12579-12595.
doi: 10.1021/acsnano.0c03570 |
[3] | 李文军, 陈山林. 周围神经损伤领域相关进展[J]. 骨科临床与研究杂志, 2019, 4(2): 65-68. |
LI Wenjun, CHEN Shanlin. Research progress of peripheral nerve injury[J]. Journal of Clinical Orthopedics and Research, 2019, 4(2): 65-68. | |
[4] | CHANG Y C, CHEN M H, LIAO S Y, et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system[J]. ACS Applied Materials & Interfaces, 2017, 9(43): 37623-37636. |
[5] |
HOU Y J, WANG X Y, ZHANG Z R, et al. Repairing transected peripheral nerve using a biomimetic nerve guidance conduit containing intraluminal sponge fillers[J]. Advanced Healthcare Materials, 2019. DOI: 10.1002/adhm.201900913.
doi: 10.1002/adhm.201900913 |
[6] |
LU J J, SUN X, YIN H Y, et al. A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration[J]. Nano Research, 2018, 11(9): 4599-4613.
doi: 10.1007/s12274-018-2041-9 |
[7] |
LAU Y T, KWOK L F, TAM K W, et al. Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design[J]. Colloids and Surfaces B: Biointerfaces, 2018, 162: 126-134.
doi: 10.1016/j.colsurfb.2017.11.061 |
[8] |
TAHERI N S, WANG Y C, BEREAN K, et al. Lithium intercalated molybdenum disulfide-coated cotton thread as a viable nerve tissue scaffold candidate[J]. ACS Applied Nano Materials, 2019, 2(4): 2044-2053.
doi: 10.1021/acsanm.9b00049 |
[9] |
AMINI S, SAUDI A, AMIRPOUR N, et al. Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: in vitro and in vivo study[J]. International Journal of Biological Macromolecules, 2020, 159: 154-173.
doi: S0141-8130(20)33220-7 pmid: 32416294 |
[10] |
DU J R, LIU J H, YAO S L, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel[J]. Acta Biomaterialia, 2017, 55: 296-309.
doi: S1742-7061(17)30237-4 pmid: 28412554 |
[11] |
WANG J, CHENG Y, CHEN L, et al. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration[J]. Acta Biomaterialia, 2019, 84: 98-113.
doi: S1742-7061(18)30695-0 pmid: 30471474 |
[12] |
HUANG L L, ZHU L, SHI X W, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo[J]. Acta Biomaterialia, 2018, 68: 223-236.
doi: S1742-7061(17)30766-3 pmid: 29274478 |
[13] |
PAWAR K, WELZEL G, HAYNL C, et al. Recombinant spider silk and collagen-based nerve guidance conduits support neuronal cell differentiation and functionality in vitro[J]. ACS Applied Bio Materials, 2019, 2(11): 4872-4880.
doi: 10.1021/acsabm.9b00628 pmid: 35021487 |
[14] | SUN Y Q, LI W, WU X L, et al. Functional self-assembling peptide nanofiber hydrogels designed for nerve degeneration[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2348-2359. |
[15] |
JAHROMI H K, FARZIN A, HASANZADEH E, et al. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110564.
doi: 10.1016/j.msec.2019.110564 |
[16] |
OMIDINIA-ANARKOLI A, BOESVELD S, TUVSHINDORJ U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells[J]. Small, 2017. DOI: 10.1002/smll.201702207.
doi: 10.1002/smll.201702207 |
[17] | HONG M H, HONG H J, PANG H, et al. Controlled release of growth factors from multilayered fibrous scaffold for functional recoveries in crushed sciatic nerve[J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 576-586. |
[18] |
ZHANG N, MILBRETA U, CHIN J S, et al. Biomimicking fiber scaffold as an effective in vitro and in vivo microrna screening platform for directing tissue regeneration[J]. Advanced Science, 2019. DOI: 10.1002/advs.201800808.
doi: 10.1002/advs.201800808 |
[19] |
JIA Y C, YANG W C, ZHANG K H, et al. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes[J]. Acta Biomaterialia, 2019, 83: 291-301.
doi: S1742-7061(18)30639-1 pmid: 30541701 |
[20] |
SANTOS D, WIERINGA P, MORONI L, et al. PEOT/PBT guides enhance nerve regeneration in long gap defects[J]. Advanced Healthcare Materials, 2017. DOI: 10.1002/adhm.201600298.
doi: 10.1002/adhm.201600298 |
[21] |
KHATRI Z, JATOI A W, AHMED F, et al. Cell adhesion behavior of poly(ε-caprolactone)/poly(L-lactic acid) nanofibers scaffold[J]. Materials Letters, 2016, 171: 178-181.
doi: 10.1016/j.matlet.2016.02.061 |
[22] |
WU H, LIU J Y, FANG Q, et al. Establishment of nerve growth factor gradients on aligned chitosan-polylactide/alginate fibers for neural tissue engineering applications[J]. Colloids and Surfaces B: Biointerfaces, 2017, 160: 598-609.
doi: 10.1016/j.colsurfb.2017.10.017 |
[23] | SUN B B, ZHOU Z F, WU T, et al. Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26684-26696. |
[24] |
CHANG W, SHAH M B, LEE P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration[J]. Acta Biomaterialia, 2018, 73: 302-311.
doi: S1742-7061(18)30249-6 pmid: 29702292 |
[25] |
QUAN Q, MENG H, CHANG B, et al. Novel 3-D helix-flexible nerve guide conduits repair nerve defects[J]. Biomaterials, 2019, 207: 49-60.
doi: S0142-9612(19)30190-5 pmid: 30954885 |
[26] |
PILLAI M M, SATHISHKUMAR G, HOUSHYAR S, et al. Nanocomposite-coated silk-based artificial conduits: the influence of structures on regeneration of the peripheral nerve[J]. ACS Applied Bio Materials, 2020, 3(7): 4454-4464.
doi: 10.1021/acsabm.0c00430 pmid: 35025444 |
[27] |
LIU X X, LU X C, WANG Z H, et al. Effect of bore fluid composition on poly(lactic-co-glycolic acid) hollow fiber membranes fabricated by dry-jet wet spinning[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.memsci.2021.119784.
doi: 10.1016/j.memsci.2021.119784 |
[28] |
JIAO J, WANG F, HUANG J J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.131826.
doi: 10.1016/j.cej.2021.131826 |
[29] | LEE S J, ASHEGHALI D, BLEVINS B, et al. Touch-spun nanofibers for nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2067-2075. |
[30] |
SINGH A, SHIEKH P A, DAS M, et al. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation[J]. Biomacromolecules, 2019, 20(2): 662-673.
doi: 10.1021/acs.biomac.8b01308 pmid: 30354073 |
[31] |
KOPPES R A, PARK S, HOOD T, et al. Thermally drawn fibers as nerve guidance scaffolds[J]. Biomaterials, 2016, 81: 27-35.
doi: S0142-9612(15)00973-4 pmid: 26717246 |
[32] | MENG C, JIANG W B, HUANG Z C, et al. Fabrication of a highly conductive silk knitted composite scaffold by two-step electrostatic self-assembly for potential peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12317-12327. |
[33] |
JING W, AO Q, WANG L, et al. Constructing conductive conduit with conductive fibrous infilling for peripheral nerve regeneration[J]. Chemical Engineering Journal, 2018, 345: 566-577.
doi: 10.1016/j.cej.2018.04.044 |
[34] |
ZHANG J, ZHANG X, WANG C Y, et al. Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation[J]. Advanced Healthcare Materials, 2021. DOI: 10.1002/adhm.202000604.
doi: 10.1002/adhm.202000604 |
[35] |
CHEN X, GE X M, QIAN Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4magnetic nanoparticles for peripheral nerve regenera-tion[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004537.
doi: 10.1002/adfm.202004537 |
[36] | ZHOU G, CHANG W, ZHOU X Q, et al. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16168-16177. |
[37] |
ZHU L, JIA S J, LIU T J, et al. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202002610.
doi: 10.1002/adfm.202002610 |
[38] |
SAMADIAN H, EHTERAMI A, SARRAFZADEH A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: in vitro and in vivo study[J]. International Journal of Biological Macromolecules, 2020, 150: 380-388.
doi: S0141-8130(19)40591-6 pmid: 32057876 |
[39] |
LU J J, YAN X Q, SUN X, et al. Synergistic effects of dual-presenting VEGF-and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration[J]. Nanoscale, 2019, 11(42): 19943-19958.
doi: 10.1039/C9NR04521J |
[40] |
YANG Z, YANG Y, XU Y C, et al. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration[J]. Stem Cell Research & Therapy, 2021. DOI: 10.1186/s13287-021-02528-x.
doi: 10.1186/s13287-021-02528-x |
[41] |
WU T, LI D D, WANG Y F, et al. Laminin-coated nerve guidance conduits based on poly(L-lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration[J]. Journal of Materials Chemistry B, 2017, 5(17): 3186-3194.
doi: 10.1039/c6tb03330j pmid: 32263716 |
[42] |
ALMANSOORI A A, HWANG C H, LEE S H, et al. Tantalum-poly (L-lactic acid) nerve conduit for peripheral nerve regeneration[J]. Neuroscience Letters, 2020. DOI: 10.1016/j.neulet.2020.135049.
doi: 10.1016/j.neulet.2020.135049 |
[43] |
SUN A X, PREST T A, FOWLER J R, et al. Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration[J]. Biomaterials, 2019, 203: 86-95.
doi: S0142-9612(19)30058-4 pmid: 30857644 |
[1] | 姚若彤, 赵婧媛, 闫一欣, 段立蓉, 王恬, 严佳, 张淑军, 李刚. 新型可降解编织结构神经再生导管的制备及其性能[J]. 纺织学报, 2022, 43(02): 125-131. |
|