纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 203-212.doi: 10.13475/j.fzxb.20210607910

• 综合述评 • 上一篇    

柔性抗冲击纺织材料及其结构的研究进展

楚艳艳1,2(), 李施辰1,2, 陈超1,2, 刘莹莹1,2, 黄伟韩3, 张越4, 陈晓钢1,2,5   

  1. 1.中原工学院 纺织服装产业研究院, 河南 郑州 451191
    2.中原工学院 河南省新型纺织材料与纺织品国际联合实验室, 河南 郑州 451191
    3.中原工学院 纺织学院, 河南 郑州 451191
    4.京都工艺纤维大学 大学院, 日本 京都 6068585
    5.曼彻斯特大学 材料学院, 英国 曼彻斯特 M199PL
  • 收稿日期:2021-06-28 修回日期:2022-07-29 出版日期:2022-12-15 发布日期:2023-01-06
  • 作者简介:楚艳艳(1981—),女,副教授,博士。主要研究方向为轻质防弹防刺纺织复合材料。E-mail:yychu@126.com
  • 基金资助:
    河南省重点研发与推广专项拟支持项目(212102210038);河南省高等学校青年骨干教师培养计划项目(2019GGJS146);中国纺织工业联合会科技指导性项目(2020062)

Research progress in bulletproof flexible textile materials and structures

CHU Yanyan1,2(), LI Shichen1,2, CHEN Chao1,2, LIU Yingying1,2, HUANG Weihan3, ZHANG Yue4, CHEN Xiaogang1,2,5   

  1. 1. Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan International Joint Laboratory of New Textile Materials, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. College of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    4. Graduate School, Kyoto Institute of Technology, Kyoto 6068585, Japan
    5. The University of Manchester, School of Materials, Manchester M199PL, UK
  • Received:2021-06-28 Revised:2022-07-29 Published:2022-12-15 Online:2023-01-06

摘要:

针对软体柔性抗冲击纺织品轻质与高防护间的矛盾,综述了抗冲击纤维薄膜新材料、纤维表面改性及结构设计等方面的研究进展。分析了新型纤维薄膜材料包括石墨烯纤维及碳纳米管纤维的理论强度、制备方法及宏观制备存在问题;阐述了剪切增稠剂、纳米无机材料对纤维表面的改性应用的方法及抗冲击效果;阐明了单层织物结构、叠层结构等的结构优势及劣势以及气凝胶复合结构、硬软仿生结构在抗冲击方面的应用前景。研究认为:在满足抗冲击性能的前提下,通过表面改性、织物结构、层间结构、硬软结构等组合设计,可使其抗冲击性与舒适性协同;高纯度石墨烯、碳纳米管纤维和薄膜的宏量化无缺陷制备将是未来抗冲击纺织品超轻量化需要突破的技术瓶颈。

关键词: 抗冲击纺织材料, 石墨烯, 碳纳米管, 剪切增稠剂, 纳米无机材料, 气凝胶复合结构, 硬软仿生结构

Abstract:

In view of the contradiction between lightweight and high protection of soft flexible impact resistant textiles, research progress in new fibers and film materials, fiber surface modification and structural design are reviewed. The theoretical strength, preparation methods and macro preparation problems about new fibers and film materials, including graphene and carbon nanotube are analyzed. The modification methods and impact resistance effects of shear thicken fluids and nano inorganic materials on the fiber surface are examined. The advantages and disadvantages of single-layer fabric structure and laminated structure have been analyzed and the application prospects of aerogel composite structure and hard-soft bionic structure used for impact resistance are expounded. It is pointed out that on the basis of fulfilling the requirements of impact resistance, coordination between comfort and impact resistance can be achieved through the combined design of surface modification, fabric structure, interlayer structure, and the hybrid use of hard and soft structures. The macro quantitative defect-free preparation of high-purity graphene and carbon nanotube fibers or films overcome the technical bottleneck for much lighter impact resistance textiles in the future.

Key words: impact resistant textile materials, graphene, carbon nanotube, shear thickening fluid, nano inorganic material, laminated structure, aerogel composite structure, soft and hard bionic structure

中图分类号: 

  • TS941
[1] MAHESH V, JOLADARASHI S, KUIKARNI S M. A comprehensive review on material selection for polymer matrix composites subjected to impact load[J]. Defence Technology, 2021, 17(1):257-277.
doi: 10.1016/j.dt.2020.04.002
[2] CHEN Xiaogang. Advanced fibrous composite materials for ballistic protection[M]. Cambridge: Woodhead Publishing. 2016: 1-10.
[3] WETZEL E D, BALU R, BEAUDET T D A. Theoretical consideration of the ballistic response of continuous graphene membranes[J]. Journal of the Mechanics and Physics of Solids, 2015, 82:23-31.
doi: 10.1016/j.jmps.2015.05.008
[4] DEWAPRIYA M, MEGUIDA S A. Comprehensive molecular dynamics studies of the ballistic resistance of multilayer graphene-polymer composite[J]. Computational Materials Science, 2019. DOI: 10.1016/j.commatsci.2019.109171.
doi: 10.1016/j.commatsci.2019.109171
[5] MENG Z X, HAN J L, QIN X, et al. Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates[J]. Carbon, 2018, 126:611-619.
doi: 10.1016/j.carbon.2017.10.068
[6] VIGNESH S, SURENDRAN R, SEKAR T, et al. Ballistic impact analysis of graphene nanosheets reinforced kevlar-29[J]. Materials Today: Proceedings, 2021, 45:788-793.
doi: 10.1016/j.matpr.2020.02.808
[7] 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9):1-7.
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9):1-7.
doi: 10.1177/004051757104100101
[8] 林玙璠. 聚电解质络合纺丝装置制备石墨烯复合纤维及其性能研究[D]. 广州: 华南理工大学, 2020:60-61.
LIN Yupan. Fabrication and properties of graphene-based composite fiber by polyelectrolyte complex spinning device[D]. Guangzhou: South China University of Technology, 2020:60-61.
[9] 徐豫新, 眭明斌, 任杰, 等. 石墨烯增强铝基SiC复合材料的动态失效机理与抗侵彻性能[J]. 北京理工大学学报, 2019, 39(2):12-18.
XU Yuxin, SUI Mingbin, REN Jie, et al. Dynamic failure mechanism and anti-penetration performance of graphene reinforced Al/SiC composites[J]. Transactions of Beijing Institute of Technology, 2019, 39(2):12-18.
[10] 计晨, 李素云. 石墨烯增强铝基 SiC复合材料抗侵彻机理试验与数值仿真[J]. 中国舰船研究, 2018, 13(4): 16-23.
JI Chen, LI Suyun. Test and numerical simulation of anti-penetration mechanism for reinforced aluminum matrix SiC composites[J]. Chinese Journal of Ship Research, 2018, 13(4) :16-23.
[11] O'MASTA M R, RUSSEL B P, DESHPANDE V S. An exploration of the ballistic resistance of multilayer graphene polymer composites[J]. Extreme Mechanics Letters. 2017, 11:49-58.
doi: 10.1016/j.eml.2016.12.001
[12] 彭景淞, 程群峰. 仿鲍鱼壳石墨烯多功能纳米复合材料[J]. 物理化学学报, 2022, 38(5): 7-19.
PENG Jingsong, CHENG Qunfeng. Nacre-inspired graphene-based multi-functional nanocomposites[J]. Acta Physico-Chimica Sinica, 2022, 38(5): 7-19.
[13] XIAO K, LEI X, CHEN Y, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact[J]. Carbon, 2021, 175:478-489.
doi: 10.1016/j.carbon.2021.01.009
[14] WANG S J, GAO E, XU Z. Interfacial failure boosts mechanical energy dissipation in carbon nanotube films under ballistic impact[J]. Carbon, 2019, 146:139-146.
doi: 10.1016/j.carbon.2019.01.110
[15] 梁琳俐. 超高相对分子质量聚乙烯/碳纳米管复合纤维的结构与性能研究[D]. 上海: 东华大学, 2005:66-67.
LIANG Linli. Investigation into structure and properties of ultra-high molecular weight polyethylene/ carbon nanotubes composite fiber[D]. Shanghai: Donghua University, 2005:66-67.
[16] 曹文鑫. 芳纶纳米纤维/碳纳米管复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:45-47.
CAO Wenxin. Study on the synthesis and properties of aramid nanofiber/carbon nanotubes composites[D]. Harbin: Harbin Institute of Technology, 2019:45-47.
[17] 白云祥, 叶璇, 谢欢欢, 等. 水平超长碳纳米管束的原位制备及其力学性能研究[C]// 朱振兴,李喜德,魏飞.中国化学会第30届学术年会:第三十九分会:纳米碳材料. 大连: 中国化学会, 2016:53.
BAI Yunxiang, YE Xuan, XIE Huanhuan, et al. The in-situ preparation and mechanical properties of horizontal ultralong carbon nanotube bundles[C]// ZHU Zhengxin,LI Dexi,WEI Fei.The 30th Annual Conference of Chinese Chemical Society: Chapter 39: Nano Carbon Materials. Dalian: Chinese Chemical Society, 2016:53.
[18] 胡东梅, 黄献聪, 李丹, 等. 碳纳米管薄膜/超高分子量聚乙烯叠层材料的防弹性能[J]. 东华大学学报(自然科学版), 2018, 44(3):341-346.
HU Dongmei, HUANG Xiancong, LI Dan, et al. Bulletproof performance of carbon nanotube film/UHMWPE with multi-layer structure[J]. Journal of Donghua University (Natural Science), 2018, 44(3):341-346.
[19] EE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003, 38 (13) : 2825-2833.
doi: 10.1023/A:1024424200221
[20] CHATTERJEE V A, VERMA S K, BHATTACHARJEED, et al. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact[J]. Composite Structure, 2019. DOI: 10.1016/j.compstruct.2019.111148.
doi: 10.1016/j.compstruct.2019.111148
[21] LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003, 38(13):2825-2833.
doi: 10.1023/A:1024424200221
[22] ASIJA N, CHOUHAN H, GEBREMESKEL S A, et al. Impact response of shear thickening fluid (STF) treated ultra high molecular weight poly ethylene composites:study of the effect of STF treatment method[J]. Thin-Walled Structures, 2018, 126:16-25.
doi: 10.1016/j.tws.2017.04.025
[23] HASANZADEH M, MOTTAGHITALAB V, REZAEI M, et al. Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact[J]. Thin-Walled Structures 2017, 119:700-706.
doi: 10.1016/j.tws.2017.07.020
[24] KHODADADI A, LIAGHAT G, VAHID S, et al. Ballistic performance of kevlar fabric impregnated with nanosilica/PEG shear thickening fluid[J]. Composites Structure, 2019, 162:643-652.
[25] BAJYA M, MAJUMDAR A, BUTOLA B S, et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid[J]. Composites Part B Engineering, 2019. DOI: 10.1016/j.compositesb.2019.107721.
doi: 10.1016/j.compositesb.2019.107721
[26] 付倩倩, 俞科静, 夏艳丽, 等. 剪切增稠胶/超高分子量聚乙烯复合材料低速冲击性能研究[J]. 化工新型材料, 2019, 47(12):62-65.
FU Qianqian, YU Kejing, XIA Yanli, et al. Study on low velocity impact performance of STG/UHMWPE composite[J]. New Chemical Materials, 2019, 47(12):62-65.
[27] GROVER G, VERMA S K, THAKUR A, et al. The effect of particle size and concentration on the ballistic resistance of different shear thickening fluids[J]. Materials Today: Proceedings, 2020, 28: 1472-1476.
doi: 10.1016/j.matpr.2020.04.823
[28] KHODADADI A, LIAGHAT G, VAHID S, et al. Ballistic performance of kevlar fabric impregnated with nanosilica/PEG shear thickening fluid[J]. Composites Part B, 2019, 162:643-652.
doi: 10.1016/j.compositesb.2018.12.121
[29] SRIVASTAVA A, BUTOLA B S, MAJUMDAR A. Improving the impact resistance performance of STF treated kevlar fabric structures[J]. Materials Today: Proceedings, 2019, 16:1538-1541.
doi: 10.1016/j.matpr.2019.05.337
[30] QIN J, WANG T, YUN J, et al. Response and adaptability of composites composed of the STF-treated kevlar fabric to temperature[J]. Composite Structures, 2020, 260(13):113511.
doi: 10.1016/j.compstruct.2020.113511
[31] AVILA A F, OLIVEIRA A M, LEÃO S G, et al. Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact[J]. Composites Part A, 2018, 112:468-474.
doi: 10.1016/j.compositesa.2018.07.006
[32] GÜRGEN S, KUSHAN M C. The ballistic performance of aramid based fabrics impregnated with multi phase shear thickening fluids[J]. Polymer Testing, 2017(64):296-306.
[33] SANTOS T F, SANTOS C M S, AQUINO M.S, et al. Influence of silane coupling agent on shear thickening fluids (STF) for personal protection[J]. Journal of Materials Research Technology, 2019, 8(5):4032-4039.
doi: 10.1016/j.jmrt.2019.07.013
[34] WANG X W, ZHANG J B, BAO L Y, et al. Enhancement of the ballistic performance of aramid fabric with polyurethane and shear thickening fluid[J]. Materials and Design, 2020. DOI: 10.1016/j.matdes.2020.109015.
doi: 10.1016/j.matdes.2020.109015
[35] CAO S, PANG H, ZHAO C, et al. The CNT/PSt-EA/Kevlar composite with excellent ballistic perfor-mance[J]. Composites Part B, 2020. DOI: 10.1016/j.compositesb.2020.107793.
doi: 10.1016/j.compositesb.2020.107793
[36] LIU L, CAI M, LIU X, et al. Ballistic impact performance of multi-phase STF-impregnated kevlar fabrics in aero-engine containment[J]. Thin-Walled Structures, 2020. DOI: 10.1016/j.tws.2020.107103.
doi: 10.1016/j.tws.2020.107103
[37] ARORA S, MAJUMDAR A, BUTOLA B S. Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response[J]. Composite Structure, 2020. DOI: 10.1016/j.compstruct.2019.111720.
doi: 10.1016/j.compstruct.2019.111720
[38] BAJYA M, MAJUMDAR A, BUTOLA B S, et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid[J]. Composite Part B Engineering, 2019. DOI: 10.1016/j.compositesb.2019.107721.
doi: 10.1016/j.compositesb.2019.107721
[39] 刘星, 霍俊丽, 李婷婷, 等. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16) :2799-2803.
LIU Xing, HUO Junli, LI Tingting, et al. Effect of plasma-treated silica on the stab resistance of shear thickening fluid impregnated aramid fabrics[J]. Materials Reports, 2019, 33(16) :2799-2803.
[40] 李聃阳, 王瑞, 刘星, 等. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(3): 106-112.
LI Danyang, WANG Rui, LIU Xing, et al. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials[J]. Journal of Textile Research, 2020, 41(3) :106-112.
[41] 田明月, 王蕊宁, 孙润军, 等. UHMWPE织物/剪切增稠液防刺复合材料的制备及性能[J]. 高分子材料科学与工程, 2020, 36(11):109-116.
TIAN Mingyue, WANG Xinning, SUN Runjun, et al. Preparation and properties of UHMWPE Fabric/Shear thickening Fluid anti-stab composite[J]. Polymer Materials Science and Engineering, 2020, 36(11):109-116.
[42] XU Y, CHEN X, WANG Y, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017, 163: 465-473.
doi: 10.1016/j.compstruct.2016.12.056
[43] 陆振乾, 许玥. 剪切增稠液浸渍高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10):58-62.
LU Zhenqian, XU Yue. Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-modlecular-weight polyethylene fabric[J]. Journal of Textile Research, 2018, 39(10):58-62.
[44] GÜRGEN S, KUSHAN M C. The ballistic performance of aramid based fabrics impregnated with multiphase shear thickening fluids[J]. Polymer Testing, 2017, 64: 296-306.
doi: 10.1016/j.polymertesting.2017.11.003
[45] LU Z, YUAN Z, CHEN X, et al. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact[J]. Composite Structures, 2019, 227:111208.
doi: 10.1016/j.compstruct.2019.111208
[46] PARK Y, KIM Y H, BALUCH A H, et al. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated kevlar fabric[J]. International Journal of Impact Engineering, 2014, 72: 67-74.
doi: 10.1016/j.ijimpeng.2014.05.007
[47] KHODADADI A, LIAGHAT G, Vahid S, et al. Ballistic performance of kevlar fabric impregnated with nanosilica/PEG shear thickening fluid[J]. Composites Part B, 2019, 162: 643-652.
doi: 10.1016/j.compositesb.2018.12.121
[48] WANG Y, CHEN X G, YOUGH R, et al. Finite element analysis of effect of inter-yarn friction on ballistic impact response of woven fabrics[J]. Composite Structures, 2016, 135:8-16.
doi: 10.1016/j.compstruct.2015.08.099
[49] DAS S, JAGAN S, SHAW A, et al. Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact[J]. Composite Structures, 2015, 120:129-140.
doi: 10.1016/j.compstruct.2014.09.063
[50] CHU Y Y, MIN S N, CHEN X G. Numerical study of inter-yarn friction on the failure of fabrics upon ballistic impacts[J]. Materials & Design, 2017, 115:299-316.
[51] SUN D M, CHEN X G. Plasma modification of Kevlar fabrics for ballistic applications[J]. Textile Research Journal, 2012, 82 (18):1928-1934.
doi: 10.1177/0040517512450765
[52] CHU Y Y, CHEN X G, TIAN L P. Modifying friction between ultra-high molecular weight polyethylene (UHMWPE) yarns with plasma enhanced chemical vapour deposition (PCVD)[J]. Applied Surface Science, 2017, 406:77-83.
doi: 10.1016/j.apsusc.2017.02.109
[53] HWANG H S, MALAKOOTI M H, PATTERSON B A, et al. Increased inter-yarn friction through ZnO nanowire arrays grown on aramid fabric[J]. Composites Science & Technology, 2015, 107:75-81.
[54] MALAKOOTI M H, HWANG H, GOULBOURNE N C. et al. Role of ZnO nanowire arrays on the impact response of aramid fabrics[J]. Composites Part B Engineering, 2017, 127:222-231.
doi: 10.1016/j.compositesb.2017.05.084
[55] HWANG H, MALAKOOTI M H, SODANO H A, et al. Tailored interyarn friction in aramid fabrics through morphology control of surface grown ZnO nanowires[J]. Composites: Part A, 2015, 76: 326-333.
doi: 10.1016/j.compositesa.2015.06.012
[56] CHU Y Y, CHEN X G, WANG Q, et al. An investigation on sol-gel treatment to aramid yarn to increase inter-yarn friction[J]. Applied Surface Science, 2014, 320:710-717.
doi: 10.1016/j.apsusc.2014.09.082
[57] CHU Y Y, CHEN X G. Finite element modelling effects of inter-yarn friction on the single-layer high-performance fabrics subject to ballistic impact[J]. Mechanics of Materials, 2018, 126:99-110.
doi: 10.1016/j.mechmat.2018.08.003
[58] SILVA A, WEBER R P, MONTEIRO S N, et al. Effect of graphene oxide coating on the ballistic performance of aramid fabric[J]. Journal of Materials Research and Technology, 2020, 9(2) :2267-2278.
doi: 10.1016/j.jmrt.2019.12.058
[59] 程凡, 黄小芸, 刘德礼. 一种商业和军用石墨烯防弹衣及其制造方法:中国, CN201710813766.5[P]. 2019-03-19.
CHENG Fan, HUANG Xiaoyun, LIU Deli. The invention relates to a commercial and military graphene bulletproof vest and a manufacturing method: China, ZL201710813766.5[P]. 2019-03-19.
[60] DASGUPTA K. Role of carbon nanotubes in the ballistic properties of boron carbide/carbon nanotube/ultrahigh molecular weight polyethylene composite armor[J]. Ceramics International, 2020, 46(4): 4137-4141.
doi: 10.1016/j.ceramint.2019.10.129
[61] DASGUPTA K, PRAKASH J, SRIVASTAVA D, et al. A process for fabricating carbon nanotube incorporated ballistic resistant armour panels and products: Indian Patent, 201721015925[P]. 2017-05-05.
[62] DOMUN N, KABOGLU C, PATON K R, et al. Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices[J]. Composites Part B Engineering, 2019, 167 :497-506.
doi: 10.1016/j.compositesb.2019.03.024
[63] HA-MINH C, IMAD A, BOUSSU F. et al. Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic impact[J]. International Journal of Impact Engineering, 2016, 88: 91-101.
doi: 10.1016/j.ijimpeng.2015.08.011
[64] CHU T L, HA-MINH C, IMA D. A Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact[J]. Composite Structures, 2017, 159:267-277.
doi: 10.1016/j.compstruct.2016.09.039
[65] 钟智丽, 薛兆磊, 孙涵, 等. 三维机织物防刺性能研究[J]. 纺织科学与工程学报, 2018, 35(4):19-23.
ZHONG Zhili, XUE Zhaolei, SUN Han, et al. Study on anti-stabbing properties of three-dimensional woven fabrics[J]. Journal of Textile Science and Engineering, 2018, 35(4):19-23.
[66] MIAO H R, WU Z Y, YING Z P, et al. The numerical and experimental investigation on low-velocity impact response of composite panels: effect of fabric architecture[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111343.
doi: 10.1016/j.compstruct.2019.111343
[67] ABTEW M A, BOUSSUA F, BRUNIAUX P, et al. Engineering of 3D warp interlock p-aramid fabric structure and its energy absorption capabilities against ballistic impact for body armour applications[J]. Composite Structure, 2019.DOI:10.10161j.compstruct,2019.
doi: 10.10161j.compstruct,2019
[68] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(6):159-165.
CHEN Xiaogang. Trend of research in textile-based protective materials against ballistic and stabbing[J]. Journal of Textile Research, 2019, 40(6):159-165.
[69] ABTEW M A, BOUSSU F, BRUNIAUXA P. et al. Ballistic impact mechanisms: a review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.110966.
doi: 10.1016/j.compstruct.2019.110966
[70] MCKEE P J, SOKOLOW A C, YU J H, et al. Finite element simulation of ballistic impact on single jersey knit fabric[J]. Composite Structures, 2017, 162: 98-107.
doi: 10.1016/j.compstruct.2016.11.086
[71] MARTíNEZ-HERGUETA F, RIDRUEJO A, GáLVEZ F, et al. Influence of fiber orientation on the ballistic performance of needlepunched nonwoven fabrics[J]. Mechanics of Materials, 2016, 94:106-116.
doi: 10.1016/j.mechmat.2015.11.019
[72] HU M Q, ZHANG J J, SUN B Z, et al. Finite element modeling of multiple transverse impact damage behaviors of 3-D braided composite beams at microstructure level[J]. International Journal of Mechanical Sciences, 2018, 148:730-744.
doi: 10.1016/j.ijmecsci.2018.09.034
[73] BAJYA M, MAJUMDAR A, BUTOLA B S. et al. Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels[J]. Composite Structures, 2021. DOI: 10.1016/j.compstruct.2020.112941.
doi: 10.1016/j.compstruct.2020.112941
[74] ROYLANCE D. Stress wave propagation in fibres: effect of crossovers[J]. Fibre Science & Technology, 1980, 13(5):385-395.
[75] CHU Y Y, RAHMAN R, MIN S N, et al. Experimental and numerical study of inter-yarn friction affecting mechanism on ballistic performance of Twaron® fabric[J]. Mechanics of Materials, 2020. DOI: 10.1016/j.mechmat.2020.103421.
doi: 10.1016/j.mechmat.2020.103421
[76] YANG Y F, CHEN X G. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111015.
doi: 10.1016/j.compstruct.2019.111015
[77] ZHOU Y, CHEN X. A numerical investigation into the influence of fabric construction on ballistic perform-ance[J]. Compos Part B Engineering, 2015, 76:209-217.
doi: 10.1016/j.compositesb.2015.02.008
[78] YANG C C, NGO T, TRAN P. Influences of weaving architectures on the impact resistance of multi-layer fabrics[J]. Materials and Design, 2015, 85: 282-295.
doi: 10.1016/j.matdes.2015.07.014
[79] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Forming characteristics and surface damages of stitched multi-layered para-aramid fabrics with various stitching parameters for soft body armour design[J]. Composites Part A, 2018, 109:517-537.
doi: 10.1016/j.compositesa.2018.02.037
[80] ZHOU Y, LI H, ZHANG Z, et al. Ballistic response of stitched woven fabrics with superior energy absorption capacity: experimental and numerical investigation[J]. Composite Structure, 2020. DOI: 10.1016/j.compstruct.2020.113328.
doi: 10.1016/j.compstruct.2020.113328
[81] YANG Y F, CHEN X G. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017, 164:1-9.
doi: 10.1016/j.compstruct.2016.12.057
[82] MARTINEZ H F, RIDRUEJO A, GONZALEZ C, et al. Ballistic performance of hybrid nonwoven/woven polyethylene fabric shields[J]. International Journal of Impact Engineering, 2017, 111:55-65.
doi: 10.1016/j.ijimpeng.2017.08.011
[83] AYTEN A İ, TASDELEN M A, EKICI B. An experimental investigation on ballistic efficiency of silica-based crosslinked aerogels in aramid fabric[J]. Ceramics International, 2020, 46(17):26724-26730.
doi: 10.1016/j.ceramint.2020.07.147
[84] 胡东梅, 黄献聪, 李丹, 等. 碳纳米管薄膜/超高分子量聚乙烯叠层材料的防弹性能[J]. 东华大学学报(自然科学版), 2018, 44(3):4-9.
HU Dongmei, HUANG Xiancong, LI Dan, et al. Bulletproof performance of carbon nanotube film/UHMWPE with multi-layer structure[J]. Journal of Donghua University(Natural Science), 2018, 44(3):4-9.
[85] NILAKANTAN G, NUTT S. Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets[J]. Defence Technology, 2018, 149(3):165-178.
[86] 何翔, 朱锡, 李永清, 等. 复合抗弹结构设计及隔热性能验证[J]. 舰船科学技术, 2017, 39(5):42-46.
HE Xiang, ZHU Xi, LI Yongqing, et al. Design and fire resistance test validation of sandwich armor struc-ture[J]. Ship Science and Technology, 2017, 39(5): 42-46.
[87] SMIRNOVA I, GURIKOV P. Aerogel production: current status, research directions, and future opportunities[J]. The Journal of Supercritical Fluids, 2018, 134: 228-233.
doi: 10.1016/j.supflu.2017.12.037
[88] PATIL S P, KULKARNI A, MARKET B. Shockwave response of graphene aerogels: an all-atom simulation study[J]. Computational Materials Science, 2021. DOI: 10.1016/j.commatsci.2020.110252.
doi: 10.1016/j.commatsci.2020.110252
[89] PATIL S P, SHENDYE P, MARKERT B. Molecular dynamics investigation of the shock response of silica aerogels[J]. Materialia, 2019. DOI: 10.1016/j.mtla.2019.100315.
doi: 10.1016/j.mtla.2019.100315
[90] 杨杰, 李树奎, 王富耻. 以气凝胶为夹层的复合结构抗弹性能研究[J]. 兵工学报, 2012, 33(8):922-926.
YANY Jie, LI Shukui, WANG Fuchi. Research on the anti-bullet performance of composite structure with aerogel interlayer[J]. Acta Armamentarii, 2021, 33(8): 921-925.
[91] AYTEN A İ, ATILLA M T, EKICI B. An experimental investigation on ballistic efficiency of silica-based crosslinked aerogels in aramid fabric[J]. Ceramics International, 2020, 46(17): 26724-26730.
doi: 10.1016/j.ceramint.2020.07.147
[92] 周庆, 刘婷, 何业茂. 防弹装甲中新型抗凹陷材料的研究[J]. 中国个体防护装备, 2019, 1:22-26.
ZHOU Qing, LIU Ting, HE Yemao. Research on new anti-depression materials in bulletproof armor[J]. China Personal Protective Equipment, 2019, 1:22-26.
[93] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B, 2019. DOI: 10.1016/j.compositesb.2019.107496.
doi: 10.1016/j.compositesb.2019.107496
[94] ISAAC C W, EZEKWEM C. A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability[J]. Composite Structures, 2020. DOI: 10.1016/j.compstruct.2020.113081.
doi: 10.1016/j.compstruct.2020.113081
[95] RAWAT P, ZHU D J, RAHMAN M Z, et al. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: a review[J]. Acta Biomaterialia, 2021, 121:41-67.
doi: 10.1016/j.actbio.2020.12.003 pmid: 33285327
[96] MARTINI R, BARTHELAT F. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales[J]. Bioinspir. Biomim, 2016, 11 (6): 1748-3182.
[97] MARTINI R, BALIT Y, BARTHELAT F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing[J]. Acta Biomaterialia, 2017, 55:360-372.
doi: S1742-7061(17)30187-3 pmid: 28323175
[98] 朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):191-197.
ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica, 2020, 37(6):191-197.
[99] 谢正权. 一种警用防刺服: ZL201811335184.1[P]. 2019-01-18.
XIE Zhengquan. A stab proof suit for police: ZL201811335184.1[P]. 2019-01-18.
[1] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[2] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[3] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[4] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[5] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[6] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[7] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[8] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[9] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[10] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[11] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[12] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[13] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[14] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[15] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!