纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 69-74.doi: 10.13475/j.fzxb.20210904006

• 纺织工程 • 上一篇    下一篇

碳化硅纤维预制体编织损伤特性研究

郭伟娜, 辛三法, 胡文锋, 高彦涛()   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2021-09-13 修回日期:2022-05-08 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 高彦涛
  • 作者简介:郭伟娜(1999—),女,硕士生。主要研究方向为SiC纤维复合材料预制体及其复合材料性能。
  • 基金资助:
    国家自然科学基金青年基金项目(11802317)

Study on damage performance of silicon carbide fiber bundles in braiding process

GUO Weina, XIN Sanfa, HU Wenfeng, GAO Yantao()   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-09-13 Revised:2022-05-08 Published:2022-12-15 Online:2023-01-06
  • Contact: GAO Yantao

摘要:

针对编织过程中碳化硅(SiC)纤维束的摩擦磨损会导致其可编织性下降等问题,在传统抱合力机基础上通过自制载荷可控的抱合夹具,模拟SiC纤维束在编织过程中与机械部件之间的摩擦行为,研究了法向载荷、摩擦速度和摩擦次数对SiC纤维束磨损行为的影响。研究表明:SiC纤维拉伸断裂表现出明显的脆性断裂行为,SiC纤维束的摩擦断裂循环次数随着法向载荷和摩擦速度的增加而显著减少,拉伸强度和断裂伸长率随着摩擦次数的增加而明显降低;当摩擦次数增加到100次时,SiC纤维束的拉伸断裂强力和断裂伸长率较原样分别减小了73%和53%;随着摩擦次数的增加,SiC纤维束破坏主要经历纤维分散、纤维起毛和纤维断裂等损伤过程。

关键词: SiC纤维束, 法向载荷, 摩擦次数, 磨损行为, 编织工艺

Abstract:

In view of the problem that the abrasion of silicon carbide (SiC) fiber bundles during the braiding process will lead to decrease of its braidability, the frictional behavior between SiC fiber bundles and mechanical components was simulated by a self-made load controllable clamping fixture based on the conventional clamping force machine (Y731D). The effects of normal load, friction speed and cyclic number of frictions on the wear behavior of SiC fiber bundles were investigated. The study shows that the tensile fracture of SiC fibers exhibited obvious brittle fracture behavior, the number of frictional fracture cycles of SiC fiber bundles decreased significantly with the increase of normal load and frictional speed, and the tensile strength and elongation at break decreased significantly with the increase of friction times. After 100 times cyclic friction, the tensile strength and elongation at break of SiC fiber bundles are decreased by 73% and 53%, respectively, compared with the original sample. It is observed that the major type of damages experienced by the SiC fiber bundles are fiber dispersion, fiber pick and fiber fracture.

Key words: SiC fiber bundle, normal load, number of friction, wear behavior, braiding process

中图分类号: 

  • TQ343+.6

图1

模拟实验装置示意图"

图2

纤维束摩擦过程示意图"

图3

拉伸测试示意图"

表1

几种纱线的相关参数"

类别 断裂强度/N 断裂伸长率/%
SiC纤维束 160.25 1.01
纯棉纱线 5.98 11.50
羊毛/腈纶混纺纱线 8.40 14.31
涤纶长丝 7.63 20.45

图4

SiC纤维断口形貌图"

图5

不同摩擦次数下SiC纤维束的摩擦形貌图"

表2

不同摩擦次数下SiC纤维束的力学性能"

摩擦次数 拉伸强力/N 断裂伸长率/%
0 160.25 1.01
40 92.30 0.60
70 71.50 0.49
100 43.95 0.47
[1] CAO S Y, WANG J, WANG H. Effect of heat treatment on the microstructure and tensile strength of KD-II SiC fibers[J]. Materials Science and Engineering: A, 2016, 673:55-62.
doi: 10.1016/j.msea.2016.07.066
[2] WANG X, SONG Z L, CHENG Z L, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society, 2020, 40(14):4872-4878.
doi: 10.1016/j.jeurceramsoc.2020.01.033
[3] WU B B, NI N, ZHAO X, et al. Strength retention in scheelite coated SiC fibers: effect of the gas composition and pre-heat treatment[J]. Journal of the European Ceramic Society, 2020, 40(8):2801-2810.
doi: 10.1016/j.jeurceramsoc.2020.02.031
[4] BHATT R T, KISER J D. Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650 ℃ in air[J]. Journal of the European Ceramic Society, 2021, 41(13):6196-6206.
doi: 10.1016/j.jeurceramsoc.2021.05.059
[5] YU P P, LIN Z J, YU J. Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP[J]. Journal of the European Ceramic Society, 2021, 41(14):6859-6868.
doi: 10.1016/j.jeurceramsoc.2021.07.020
[6] WANG Y L, WANG W L, HUANG J H, et al. Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification[J]. Journal of the European Ceramic Society, 2021, 41(14):6824-6833.
doi: 10.1016/j.jeurceramsoc.2021.07.009
[7] EBEL C, MIERZW A, KIND K. Yarn damage during braiding of reinforcement fibers for composites[J]. Advances in Braiding Technology, 2015. DOI:10.1016/b978-0-08-100407-4.00013-2.
doi: 10.1016/b978-0-08-100407-4.00013-2
[8] WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12):2743-2750.
[9] WANG H, WANG J, SONG Y C, et al. Research progress of polymer-derived continuous silicon carbide fibers[J]. Aeronautical Manufacturing Technology, 2014, (6):41-44.
[10] KIM J Y, HWANG Y T, BAEK J H, et al. Study on inter-ply friction between woven and unidirectional prepregs and its effect on the composite forming process[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2021.113888.
doi: 10.1016/j.compstruct.2021.113888
[11] XIANG Z N, LIU Y N, ZHOU X Q, et al. Interlayer contact mechanism of the frictional behavior of glass-fiber woven fabrics and improvements of winding characteristics[J]. Composite Structures, 2020. DOI:10.1016/j.compstruct.2019.111497.
doi: 10.1016/j.compstruct.2019.111497
[12] PRASHANT S H, HARISHA P, SAMPATH K L, et al. Study on flexural behavior of glass-fiber reinforced polymer matrix composite[J]. Materials Today: Proceedings, 2021, 54:159-162.
doi: 10.1016/j.matpr.2021.08.200
[13] LAU K W, DIAS T. Knittability of high-modulus yarns[J]. Journal of The Textile Institute, 1993, 85(2):173-190.
doi: 10.1080/00405009408659018
[14] AAVCI S, CURISKIS J I, PAILTHORPE M T. Knittability of glass fiber weft-knitted preforms for composites[J]. Textile Research Journal, 2001, 71(1):15-21.
doi: 10.1177/004051750107100103
[15] LIU X M, CHEN N L, FENG X W. Effect of yarn parameters on the knittability of glass ply yarn[J]. Fibers & Textiles in Eastern Europe, 2008, 16 (5):90-93.
[16] WANG Q M, YANG X, GAO J, et al. Knittability of basalt fiber weft-knitted fabrics for composite reinforcement based on properties of advanced composite materials[J]. Advanced Materials Research, 2012, 583: 207-210.
doi: 10.4028/www.scientific.net/AMR.583.207
[17] TOURLONIAS M, BUENO M. Experimental simulation of friction and wear of carbon yarns during the weaving process[J]. Composites: Part A, 2016, 80:228-236.
doi: 10.1016/j.compositesa.2015.07.024
[18] WU N, HAN M Y, JIAO Y N, et al. Research progress on weavability of high-performance fibers[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 81-89.
[19] RUDOV-CLARK S, MOURITZ A P, LEE L, et al. Fibre damage in the manufacture of advanced three-dimensional woven composites[J]. Composites: Part A, 2003, 34(10):963-970.
doi: 10.1016/S1359-835X(03)00213-6
[20] KOVALCHENKO A M, GOEL S, ZAKIEV I M, et al. Suppressing scratch induced brittle fracture in silicon by geometric design modification of the abrasive grits[J]. Journal of Materials Research & Technology, 2019, 8(1):703-712.
[21] DUAN Y D, QIU H P, YANG T T, et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composite Communications, 2021. DOI: 10.1016/j.coco.2021.100921.
doi: 10.1016/j.coco.2021.100921
[22] XUE Y D, HU J B, ZHOU H J, et al. Damage development of a woven SiCf/SiC composite during multi-step fatigue tests at room temperature[J]. Ceramics International, 2020, 46(14):22116-22126.
doi: 10.1016/j.ceramint.2020.05.270
[23] 马刚峰, 徐泽夕, 常青, 等. 碳纤维上浆剂的开发和研究进展[J]. 现代纺织技术, 2012, 20(5):61-64.
MA Gangfeng, XU Zexi, CHANG Qing, et al. Development and research progress of carbon fiber sizing agent[J]. Advanced Textile Technology, 2012, 20(5):61-64.
[24] 张如良, 黄玉东, 刘丽, 等. 上浆剂分子量对碳纤维表观性能及其界面性能影响研究[J]. 材料科学与工艺, 2011, 19(3):137-143.
ZHANG Ruliang, HUANG Yudong, LIU Li, et al. Effect of the molecular weight of sizing agent on the carbon fiber surface and interface properties[J]. Materials Science and Technology, 2011, 19(3):137-143.
doi: 10.1179/174328413X13789825316707
[25] XIE B, ZHAO H D, LONG H, et al. 3D characteristics of pores in SiC particle preforms with different starch contents by X-ray micro-computed tomography[J]. Ceramics International, 2019, 45(15):23924-23933.
doi: 10.1016/j.ceramint.2019.07.281
[26] 鲁祥勇, 李效东, 彭平, 等. 碳化硅纤维乳液上胶剂的研究[J]. 化工新型材料, 1999(5):33-35.
LU Xiangyong, LI Xiaodong, PENG Ping, et al. Study on the emulsion type sizing agent for SiC fiber[J]. New Chemical Materials, 2017, 38(3):78-84.
[27] 赵玉芬, 李嘉禄, 宋磊磊, 等. 上浆剂对国产碳化硅纤维表面及其织造性能的影响[J]. 纺织学报, 2017, 38(3):78-84.
ZHAO Yufen, LI Jialu, SONG Leilei, et al. Influence of sizing agent on surface and weaving performance of SiC fibers[J]. Journal of Textile Research, 2017, 38(3):78-84.
[28] GUO W N, GAO Y T, HU W F, et al. Study on the mechanical property of high-performance silicon carbon fiber[J]. Advanced Engineering Materials, 2022. DOI: 10.10021adem.2101407.
doi: 10.10021adem.2101407
[29] 朱梅. 高模量纤维纱线针织可编织性能的研究[D]. 上海: 东华大学, 2004:11-12.
ZHU Mei. A Study on the knittability of high-modulus fibre yarns[D]. Shanghai: Donghua University, 2004:11-12.
[30] CORNELISSEN B, ROOIJ M B D, RIETMAN B, et al. Frictional behaviour of high performance fibrous tows: a contact mechanics model of tow-metal friction[J]. Wear, 2013, 305(1-2):78-88.
doi: 10.1016/j.wear.2013.05.014
[31] 熊小曼. 机织生产中影响织造效率及成品质量的摩擦作用研究[D]. 武汉: 武汉纺织大学, 2013:25-27.
XIONG Xiaoman. A study on primary friction effect that influence weaving efficiency and product quality during weaving process[D]. Wuhai: Wuhan Textile University, 2013:25-27.
[1] 路丽莎, 蒋高明. 全成形针织服装三维款式向二维样板转化方法[J]. 纺织学报, 2022, 43(10): 133-140.
[2] 徐艳华, 袁新林. 纸样技术在全成形斜裙编织工艺中的应用[J]. 纺织学报, 2022, 43(10): 141-147.
[3] 陈曦, 缪旭红, 刘青, 董智佳. 全成形Y形三通管织物编织工艺设计[J]. 纺织学报, 2021, 42(05): 73-78.
[4] 詹必钦, 丛洪莲, 吴光军. 全成形双层结构针织服装工艺模型研究与应用[J]. 纺织学报, 2021, 42(03): 149-154.
[5] 袁天行, 孙志宏, 吕宏展, 李雪清, 顾生辉. 无结网编织工艺研究[J]. 纺织学报, 2019, 40(09): 70-74.
[6] 孙卫红, 阮棉奖, 邵铁锋, 梁曼. 基于机器视觉的生丝抱合性能检测方法[J]. 纺织学报, 2019, 40(08): 164-168.
[7] 路丽莎, 蒋高明, 罗璇. 全成形毛衫腋下拼角编织工艺及性能[J]. 纺织学报, 2019, 40(02): 69-75.
[8] 张志毅 贺辛亥 张婷 杨宏蕾 程稼稷. 三维异型整体编织底盘装置的设计[J]. 纺织学报, 2018, 39(12): 107-112.
[9] 邱庄岩 花芬 吴志明. 四针床全成形编织工艺及其应用[J]. 纺织学报, 2018, 39(08): 63-70.
[10] 马晓红 檀江涛 秦志刚. 碳纤维二维编织管状织物的编织工艺[J]. 纺织学报, 2018, 39(06): 64-69.
[11] 吴晓光 朱里 张驰 孔令学 万道玉. 零传动模式的高速轴向悬浮织针运动控制与试验分析[J]. 纺织学报, 2016, 37(4): 137-142.
[12] 徐艳华 杨婧. 纸样技术在非常规造型毛针织服装编织工艺中的应用[J]. 纺织学报, 2016, 37(08): 107-113.
[13] 李晓英 蒋高明 马丕波 聂小林. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016, 37(07): 66-70.
[14] 袁新林 徐艳华 周宁静. 折纸造型在毛衫花型设计中的应用[J]. 纺织学报, 2016, 37(05): 110-116.
[15] 苏丹 蒋高明 缪旭红. 三维整体经编夹芯结构预制件的制备工艺[J]. 纺织学报, 2013, 34(3): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!