纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 8-15.doi: 10.13475/j.fzxb.20210905908

• 纤维材料 • 上一篇    下一篇

柳絮纤维生物质炭的制备及其对染料废液中Cr(Ⅵ)的吸附性能

付玮康1, 郭筱洁2, 潘孟涛1, 宋聚滟1, 奚柏君1()   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.杭州电子科技大学 材料与环境工程学院, 浙江 杭州 310000
  • 收稿日期:2021-09-16 修回日期:2022-04-28 出版日期:2022-12-15 发布日期:2023-01-06
  • 通讯作者: 奚柏君
  • 作者简介:付玮康(1995—),男,硕士生。主要研究方向为天然纤维材料的开发利用。
  • 基金资助:
    浙江省科技厅公益项目(LGG19E030005)

Preparation of catkin fiber biochar and its adsorption properties for Cr(VI) in dye wastewater

FU Weikang1, GUO Xiaojie2, PAN Mengtao1, SONG Juyan1, XI Bojun1()   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310000,China
  • Received:2021-09-16 Revised:2022-04-28 Published:2022-12-15 Online:2023-01-06
  • Contact: XI Bojun

摘要:

针对目前酸性媒染染料废水中的六价铬Cr(VI)对水体环境污染严重的问题,以柳絮纤维为原料,通过限氧裂解法制备了KOH活化生物质炭(CBK)、NaOH活化生物质炭(CBN),采用吸附批实验法研究模拟染料废液pH值、吸附剂投放量、温度效应等对柳絮纤维生物质炭吸附处理Cr(VI)的影响,利用动力学和热力学相关模型对吸附过程进行拟合,探究柳絮纤维生物质炭对Cr(VI)的吸附机制。结果表明:CBK较CBN比表面积显著增大,表面吸附位点增多;在模拟废液pH值为2时,CBK、CBN对Cr(VI)的理论最大吸附量分别为82.68、47.16 mg/g,且吸附过程符合Freundlich热力学模型和准二级动力学模型,吸附过程主要为多分子层吸附,同时还伴随着化学吸附,该吸附反应是自发进行且为吸热反应,温度升高可显著提高柳絮纤维生物质炭对Cr(VI)的吸附量。

关键词: 柳絮纤维, 生物质炭, 重金属吸附, Cr(VI), 吸附机制, 染料废液处理

Abstract:

In view of the serious pollution of hexavalent chromium Cr(VI) in acid mordant dye wastewater to water environment, KOH activated biochar (CBK) and NaOH activated biochar (CBN) were prepared by oxygen limiting pyrolysis with catkin fiber. The effects of pH value of a simulated dye waste liquid and dosage of adsorbent and temperature effect on the adsorption treatment of Cr(VI) by catkin fiber biochar were studied by adsorption batch experiment. The adsorption process was fitted by kinetic and thermodynamic models to explore the adsorption and fixation mechanism of Cr(VI) by catkin fiber biochar. The results show that the specific surface area of CBK is significantly larger than that of CBN, and the surface adsorption sites are increased. When the pH value of the solution is 2, the theoretical maximum adsorption capacity of Cr(VI) by CBK and CBN is 82.68 and 47.16 mg/g respectively. The adsorption process conforms to Freundlich thermodynamic model and quasi second-order kinetic model, which means that the adsorption process is mainly multi-molecular layer adsorption, accompanied by chemical adsorption. The adsorption reaction is spontaneous and endothermic, and the increase of temperature can significantly improve the adsorption capacity of catkin fiber biomass carbon for Cr(VI).

Key words: catkin fiber, biochar, heavy metals adsorption, Cr(VI), adsorption mechanism, dye waste liquid treatment

中图分类号: 

  • TS102.9

图1

不同温度下制备的生物质炭碘吸附值"

图2

柳絮纤维生物质炭的红外光谱"

图3

柳絮纤维生物质炭的XRD图"

图4

柳絮纤维生物质炭的扫描电子显微镜照片"

表1

柳絮纤维生物质炭的比表面积测试结果"

生物质炭
编号
比表面积/
(m2·g-1)
总孔体积/
(cm3·g-1)
平均孔
径/nm
CBK 211.90 0.13 2.47
CBN 74.40 0.11 6.10

图5

pH值对吸附Cr(VI)的影响"

图6

生物质炭用量对吸附Cr(VI)的影响"

图7

吸附动力学模型"

表2

动力学拟合常数"

生物质炭
编号
准一级动力学模型 准二级动力学模型
Qe/(mg·g-1) K1/min-1 R2 Qe/(mg·g-1) K2/(g·mg-1·min-1) R2
CBK 75.23 0.023 0.732 7 82.68 0.002 3 0.940 9
CBN 43.68 0.036 0.707 9 47.16 0.001 2 0.925 1

表3

热力学拟合常数"

生物质炭
编号
Langmuir模型 Freundlich模型
Qm/(mg·g-1) KL/(L·mg-1) R2 KF/(mg1-1/n·L1/n·g-1) n R2
CBK 101.86 0.96 0.579 4 58.17 6.82 0.969 6
CBN 57.73 0.41 0.669 4 28.94 6.22 0.942 1

图8

吸附等温线模型"

图9

温度对吸附Cr(VI)的影响"

图10

Cr(VI)在CBK上的吸附热力学拟合曲线"

表4

CBK吸附Cr(VI)的热力学参数"

T/℃ ΔG0/
(kJ·mol-1)
ΔH0/
(kJ·mol-1)
ΔS0/
(J·mol-1·K-1)
20 -5.97 24.87 105.13
30 -6.89
40 -8.08
[1] LIN Y, MUNROE P, JOSEPH S, et al. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals[J]. Chemosphere, 2013, 91(36): 35-40.
doi: 10.1016/j.chemosphere.2012.11.063
[2] ESSANDOH M, KUNWAR B, PITTMAN C U, et al. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis bio-char[J]. Chemical Engineering Journal, 2015, 265:219-227.
doi: 10.1016/j.cej.2014.12.006
[3] 杨萌, 邢海, 闻秀娟, 等. 生物质炭对土壤重金属污染修复作用的研究进展[J]. 贵州农业科学, 2020, 48(4):153-160.
YANG Meng, XING Hai, WEN Xiujuan, et al. Research progress on effects of biochar on remediation of heavy metal contaminated soil[J]. Guizhou Agricultural Sciences, 2020, 48(4): 153-160.
[4] 富生源环保. 2017年中国纺织印染废水处理现状及趋势. [EB/OL]. (2017-05-17). http://www.fushengyuan.com.
FSY Environmental Protection. Current situation and trend of textile printing and dyeing wastewater treatment in China in 2017. [EB/OL]. (2017-05-17). http://www.fushengyuan.com.
[5] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
CAO Xinxin, LI Fuchang. Research progress on adsorption performance of graphene aerogel in waste-water[J]. Materials Reports, 2020, 34(7): 7020-7025.
[6] 陈锋, 马路路, 郭世浩, 等. 硼掺杂石墨烯对废水中铬(VI)的吸附性能及吸附机理研究[J]. 应用化工, 2019, 48(5):1001-1006,1011.
CHEN Feng, MA Lulu, GUO Shihao, et al. Adsorption property and mechanism of chromium (VI) in wastewater boron-doped graphene[J]. Applied Chemical Industry, 2019, 48 (5): 1001-1006,1011.
[7] YANG Guanxi, JIANG Hong. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48:396-405.
doi: 10.1016/j.watres.2013.09.050
[8] 林烨, 姚路, 吴登鹏, 等. 基于柳絮的生物质活性炭制备及电容性能的研究[J]. 电子元件与材料, 2018, 37(10): 13-21.
LIN Ye, YAO Lu, WU Dengpeng, et al. Preparation and capacitance properties of activated carbon derived from willow catkin for supercapacitors[J]. Electronic Components and Materials, 2018, 37(10): 13-21.
[9] 吕爱超, 刘彦明, 李苗苗, 等. 改性杨絮纤维素对重金属离子的吸附[J]. 大连工业大学学报, 2017, 36(2): 120-123.
LV Aichao, LIU Yanming, LI Miaomiao, et al. Adsorption of heavy metal ions by modified populus cellulose[J]. Journal of Dalian Polytechnic University, 2017, 36(2): 120-123.
[10] 温嘉伟, 王辉, 张浩, 等. 改性棕榈树纤维生物质炭的制备及其对溶液中Pb2+的吸附性能分析[J]. 农业环境科学学报, 2021, 40(5): 1088-1096.
WEN Jiawei, WANG Hui, ZHANG Hao, et al. Preparation of modified palm fiber biochars and their adsorption of Pb2+ in solution[J]. Journal of Agro-Environment Science, 2021, 40(5): 1088-1096.
[11] 陈再明, 方远, 徐义亮, 等. 水稻秸秆生物碳对重金属 Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4): 769-776.
CHEN Zaiming, FANG Yuan, XU Yiliang, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4) : 769-776.
[12] 唐裕芳, 赵月梅, 李玉芹, 等. 香樟叶生物质炭制备及其吸附孔雀石绿性能研究[J]. 湘潭大学自然科学学报, 2020, 42(1):1-6.
TANG Yufang, ZHAO Yuemei, LI Yuqin, et al. Preparation of bio-carbon from C.Camphora and its adsorption performance for malachite green[J]. Natural Science Journal of Xiangtan University, 2020, 42(1):1-6.
[13] 李荣华, 张增强, 孟昭福, 等. 玉米秸秆对Cr(Ⅵ)的生物吸附及热力学特征研究[J]. 环境科学学报, 2009, 29(7): 1434-1441.
LI Ronghua, ZHANG Zengqiang, MENG Zhaofu, et al. Biosorption of Cr (Ⅵ) by corn stalk biomass: thermodynamics and mechanism[J]. Acta Scientiae Circumstantiae, 2009, 29(7): 1434-1441.
[14] 张亚茹, 张英, 史祥利, 等. pH 对生物质炭吸附诺氟沙星和磺胺甲恶唑的影响[J]. 农业资源与环境学报, 2020, 37(4):552-561.
ZHANG Yaru, ZHANG Ying, SHI Xiangli, et al. Effect of pH on biochar adsorption of norfloxacin and sulfamethoxazole[J]. Journal of Agricultural Resources and Environment, 2020, 37(4):552-561.
[15] BABU N, ASMA K, RAGHUPATHI A, et al. Screening of leather auxiliaries for their role in toxic hexavalent chromium formation in leather-posing potential health hazards to the users[J]. Journal of Cleaner Production, 2005, 13(12): 1189-1195.
doi: 10.1016/j.jclepro.2004.07.003
[16] 傅凯放. 造纸黑液木质素活性炭的制备、表征及吸附应用[D]. 济南: 山东大学, 2018: 46-48.
FU Kaifang. Preparation/Characterization and application of lignin-based activated carbons from black liquor[D]. Ji'nan: Shandong University, 2018: 46-48.
[17] 刘伟, 杨琦, 李博, 等. 磁性石墨烯吸附水中 Cr(Ⅵ)研究[J]. 环境科学, 2015(2) :537-544.
LIU Wei, YANG Qi, LI Bo, et al. Adsorption of Cr(Ⅵ) on magnetic graphene from aqueous solu-tion[J]. Environmental Science, 2015(2) :537-544.
[18] TAN I A, AHMAD A L, HAMEED B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon[J]. Journal of Hazardous Materials, 2009, 164(2) :473-482.
doi: 10.1016/j.jhazmat.2008.08.025
[19] WU Jin, ZHU Hongshan, LIU Ge, et al. fabrication of core-shell CMNP@PmPD nanocomposite for efficient As(Ⅴ) adsorption and reduction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4399-4407.
[20] SONG Wengcheng, LIANG Jun, WEN Tao, et al. Accumulation of Co(II) and Eu(III) by the mycelia of aspergillus niger isolated from radionuclide-contaminated soils[J]. Chemical Engineering Journal, 2016, 304: 186-193.
doi: 10.1016/j.cej.2016.06.103
[1] 卢琳娜 陈宇岳 李永贵. 纳米金与粘胶纤维的吸附机制[J]. 纺织学报, 2018, 39(09): 22-28.
[2] 高慧英 蒙冉菊 华佳瑞 邵碧琼 刘琳 姚菊明. 改性废棉对水溶液中Cu2+的吸附性能[J]. 纺织学报, 2017, 38(12): 112-118.
[3] 王遥 朱青 胡春艳 王栋 阎克路. 改性聚乙烯醇-乙烯共聚物纳米纤维膜对重金属离子的吸附性能[J]. 纺织学报, 2017, 38(06): 11-16.
[4] 吴明华;林鹤鸣. 合成单宁在锦纶和蚕丝织物上的吸附[J]. 纺织学报, 2008, 29(5): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!