纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 11-20.doi: 10.13475/j.fzxb.20220606310

• 特约专栏:纺织科技前沿 • 上一篇    下一篇

热拉式多材料纤维光电子技术研究进展与展望

张晶1, 黄治恒2, 牛广亮2, 梁生3, 杨旅云2, 魏磊4, 周时凤5, 侯冲2,6, 陶光明2,7()   

  1. 1.中国地质大学(武汉) 机械与电子信息学院, 湖北 武汉 430074
    2.华中科技大学 武汉光电国家研究中心和光谷实验室, 湖北 武汉 430074
    3.北京交通大学 物理科学与工程学院, 北京 100044
    4.南洋理工大学电气与电子工程学院, 新加坡 639798
    5.华南理工大学 材料科学与工程学院, 广东 广州 510640
    6.华中科技大学 光学与电子信息学院, 湖北 武汉 430074
    7.华中科技大学材料成型与模具技术国家重点实验室, 湖北 武汉 430074
  • 收稿日期:2022-06-27 修回日期:2022-09-18 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 陶光明(1985—),男,教授,博士。主要研究方向为纤维光电子学。E-mail:tao@hust.edu.cn
  • 作者简介:张晶(1989—),女,教授,博士。主要研究方向为新型特种光纤、光纤传感、地质光纤智能感知。
  • 基金资助:
    国家自然科学基金项目(61875064);国家自然科学基金项目(62175082)

Review on thermal-drawn multimaterial fiber optoelectronics

ZHANG Jing1, HUANG Zhiheng2, NIU Guangliang2, LIANG Sheng3, YANG Lüyun2, WEI Lei4, ZHOU Shifeng5, HOU Chong2,6, TAO Guangming2,7()   

  1. 1. School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China
    2. Wuhan National Laboratory for Optoelectronics and Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
    3. School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
    4. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
    5. School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
    6. School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
    7. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2022-06-27 Revised:2022-09-18 Published:2023-01-15 Online:2023-02-16

摘要:

随着纺织工程和材料科学的快速发展,智能纤维与织物以其柔软、轻便、透气等优势成为可穿戴设备的首选载体。热拉式多材料光电子纤维有望通过热拉制工艺发展为具有多参量感知、温度调控、信息交互等功能的智能纤维。为使热拉式多材料光电子纤维可更好地服务于纺织行业,重点讨论了热拉式多材料纤维光电子技术的研究进展,总结了热拉纤维内微纳结构的调控机制,阐述了热拉式多材料纤维在传感、能源、生物、医疗等场景中的应用,并展望了热拉式多材料纤维光电子技术未来在材料选择及研发、纤维结构调控、纺织加工、多功能集成、人工智能5个方面的研究趋势。最后指出:热拉式多材料光电子纤维未来将从单一功能向多功能、力学性能改善、智能计算等方向发展,以便更好地与传统纺织加工技术结合,进一步提升织物的功能性、穿戴舒适性、场景普适性。

关键词: 热拉工艺, 多材料纤维, 纤维光电子技术, 微纳结构, 功能纤维, 智能纤维

Abstract:

Significance With the rapid development of textile engineering and material science, intelligent fibers and related fabrics have become the preferred carriers for wearable electronics with their advantages in softness, lightness, and breathability. A variety of fiber manufacturing technologies has been developed, enabling conventional fibers with new capabilities such as environmental/physical/chemical sensing, logical computing, human-machine interaction, and so on. Among these manufacturing techniques, the thermal drawing process can be adopted to fabricate multimaterial optoelectronic fibers, providing an innovative research for intelligent fibers and fabrics. By enriching fiber structures, materials and post-treatment techniques, thermal-drawn fibers can be integrated with multiple functions such as multi-parameter sensing, temperature regulation, and information interaction, broadening the application scenarios of fibers.
Progress Thermal-drawn multimaterial optoelectronic fibers are generally drawn from fiber preforms with a fiber drawing tower. The external forms, internal structures, and materials of fiber preforms can all be designed with great flexibility according to the applications and functions. The diameters of fibers are typically in the micron range, and the structures of the fibers are consistent with the preform rods. In addition, fiber post-treatment techniques, such as thermal treatment and cold-drawing process, can further enrich and modify the structures, giving more ways to improve the functionalities of fibers.
With these advanced fiber drawing and processing technologies, micro- and nano-structured fibers can be achieved. For example, a low-loss CO2 laser-propagated photonic bandgap fiber has been achieved with a hollow core surrounded by a solid multilayer structure of high refractive-index contrast. The fiber has a large photonic bandgap and omnidirectional reflectivity. Nanowires, structural micro- and nanospheres, nanorods, and porous fibers have also been produced in a scalable way by the in-fiber fluid instability phenomena, cold-drawing deformation, and salt leaching techniques. Moreover, surface micro-nano imprinting technology has been utilized to construct specific fibers with micro/nano-surface patterns.
The richness of structures and materials gives fibers a variety of advanced functionalities, such as sensing, energy management, neural probing, and information interaction. For sensing, the thermal-drawn fibers have been achieved with acoustic, photoelectric, strain, and chemical sensing. For energy management, fiber-based devices are enabled with the functions of passive temperature regulation and energy generation/storage. Thermal-drawn fibers have also been widely used as neural probes because of their flexibility, small size, and conductive property. In addition, semiconductor diodes and integrated circuits have been integrated into thermal-drawn fibers successfully, which empowers the fibers with the abilities of logical computing and information interaction.
Conclusion and Prospect This work focuses on the research progress and application fields of thermal-drawn multimaterial fiber, reviews the regulation of the micro/nanostructures inside the fibers by thermal drawing, and discusses their applications in sensing, energy, biology and others with recent studies.
However, there are still some limitations to thermal-drawn multimaterial fiber optoelectronics. 1) Only a few of materials and structures are investigated and applied into the system. 2) The mechanical properties and comfort of wearing of thermal-drawn fibers need to be improved. 3) It is still difficult to integrate multiple functions into one fiber. 4) The abilities of logical calculation and data management of the thermal-drawn fibers should be enhanced.
The future research trends of thermal-drawn multimaterial optoelectronic fibers are discussed from five aspects: more material selection, complex fiber structure, textile processing, multi-function integration, and artificial intelligence. It is foreseen that current mono-functional thermal-drawn multimaterial optoelectronic fibers can be improved for higher integrations, better mechanical properties, and more intelligence. These advanced fibers can also be combined with conventional textiles to enable their functionalities, comfort of wearing, and applicability to scenarios.

Key words: thermal drawing process, multimaterial fiber, fiber optoelectronics, micro- and nano-structure, functional fiber, intelligent fiber

图1

具有微纳结构的热拉式多材料光电子纤维示意图"

图2

热拉式多材料光电子纤维的应用领域及展望"

[1] RAMAMOORTHY S K, SKRIFVARS M, PERSSON A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers[J]. Polymer Reviews, 2015, 55(1): 107-162.
doi: 10.1080/15583724.2014.971124
[2] WILSON J. Fibres, yarns and fabrics: fundamental principles for the textile designer[M]// Textile design. [S.l.]: Woodhead Publishing, 2011: 3-30.
[3] YAN W, DONG C, XIANG Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics[J]. Materials Today, 2020, 35: 168-194.
doi: 10.1016/j.mattod.2019.11.006
[4] CUSANO A, CONSALES M, CRESCITELLI A, et al. Lab-on-fiber technology[M]. [S.l.]: Springer International Publishing, 2015: 1-20.
[5] TEMELKURAN B, HART S D, BENOIT G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420(6916): 650-653.
doi: 10.1038/nature01275
[6] HART S D, MASKALY G R, TEMELKURAN B, et al. External reflection from omnidirectional dielectric mirror fibers[J]. Science, 2002, 296(5567): 510-513.
pmid: 11964473
[7] WANG X, JIAO K, SI N, et al. Extruded seven-core tellurium chalcogenide fiber for mid-infrared[J]. Optical Materials Express, 2019, 9(9): 3863-3870.
doi: 10.1364/OME.9.003863
[8] DENG D S, ORF N D, ABOURADDY A F, et al. In-fiber semiconductor filament arrays[J]. Nano Letters, 2008, 8(12): 4265-4269.
doi: 10.1021/nl801979w pmid: 19367844
[9] KAUFMAN J J, TAO G, SHABAHANG S, et al. Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires[J]. Nano Letters, 2011, 11(11): 4768-4773.
doi: 10.1021/nl202583g pmid: 21967545
[10] YAN W, RICHARD I, KURTULDU G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios[J]. Nature Nanotechnology, 2020, 15(10): 875-882.
doi: 10.1038/s41565-020-0747-9
[11] KAUFMAN J J, OTTMAN R, TAO G, et al. In-fiber production of polymeric particles for biosensing and encapsulation[J]. Proceedings of the National Academy of Sciences, 2013, 110(39): 15549-15554.
doi: 10.1073/pnas.1310214110
[12] TAO G, KAUFMAN J J, SHABAHANG S, et al. Digital design of multimaterial photonic particles[J]. Proceedings of the National Academy of Sciences, 2016, 113(25): 6839-6844.
doi: 10.1073/pnas.1601777113
[13] KAUFMAN J J, TAO G, SHABAHANG S, et al. Structured spheres generated by an in-fibre fluid instability[J]. Nature, 2012, 487(7408): 463-467.
doi: 10.1038/nature11215
[14] GUMENNIK A, WEI L, LESTOQUOY G, et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities[J]. Nature Communications, 2013, 4(1): 1-8.
[15] WEI L, HOU C, LEVY E, et al. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities[J]. Advanced Materials, 2017. DOI:10.1002/adma.201603033.
doi: 10.1002/adma.201603033
[16] ZHANG J, WANG Z, WANG Z, et al. In-fibre particle manipulation and device assembly via laser induced thermocapillary convection[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[17] ZHENG Z, FELDMAN D. Synthetic fibre-reinforced concrete[J]. Progress in Polymer Science, 1995, 20(2): 185-210.
doi: 10.1016/0079-6700(94)00030-6
[18] SHABAHANG S, TAO G, KAUFMAN J J, et al. Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing[J]. Nature, 2016, 534(7608): 529-533.
doi: 10.1038/nature17980
[19] KHUDIYEV T, HOU C, STOLYAROV A M, et al. Sub-micrometer surface-patterned ribbon fibers and textiles[J]. Advanced Materials, 2017. DOI:10.1002/adma.201605868.
doi: 10.1002/adma.201605868
[20] WANG Z, WU T, WANG Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing[J]. Nature Communications, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7
[21] DONG C, LEBER A, DAS GUPTA T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles[J]. Nature Communications, 2020, 11(1): 1-9.
doi: 10.1038/s41467-019-13993-7
[22] TOUSI M M, ZHANG Y, WAN S, et al. Scalable fabrication of highly flexible porous polymer-based capacitive humidity sensor using convergence fiber drawing[J]. Polymers, 2019. DOI:10.3390/polym11121985.
doi: 10.3390/polym11121985
[23] SHAHRIARI D, LOKE G, TAFEL I, et al. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries[J]. Advanced Materials, 2019. DOI:10.1002/adma.201902021.
doi: 10.1002/adma.201902021
[24] GRENA B, ALAYRAC J B, LEVY E, et al. Thermally-drawn fibers with spatially-selective porous domains[J]. Nature Communications, 2017, 8(1): 1-8.
doi: 10.1038/s41467-016-0009-6
[25] EGUSA S, WANG Z, CHOCAT N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8): 643-648.
doi: 10.1038/nmat2792 pmid: 20622864
[26] CHOCAT N, LESTOQUOY G, WANG Z, et al. Piezoelectric fibers for conformal acoustics[J]. Advanced Materials, 2012, 24(39): 5327-5332.
doi: 10.1002/adma.201201355
[27] WANG S, ZHANG T, LI K, et al. Flexible piezoelectric fibers for acoustic sensing and positioning[J]. Advanced Electronic Materials, 2017. DOI:10.1002/aelm.201600449.
doi: 10.1002/aelm.201600449
[28] YAN W, NOEL G, LOKE G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations[J]. Nature, 2022, 603(7902): 616-623.
doi: 10.1038/s41586-022-04476-9
[29] ABOURADDY A F, SHAPIRA O, BAYINDIR M, et al. Large-scale optical-field measurements with geometric fibre constructs[J]. Nature Materials, 2006, 5(7): 532-536.
pmid: 16799549
[30] BAYINDIR M, SHAPIRA O, SAYGIN-HINCZEWSKI D, et al. Integrated fibres for self-monitored optical transport[J]. Nature Materials, 2005, 4(11): 820-825.
doi: 10.1038/nmat1512
[31] BAYINDIR M, SORIN F, ABOURADDY A F, et al. Metal-insulator-semiconductor optoelectronic fibres[J]. Nature, 2004, 431(7010): 826-829.
doi: 10.1038/nature02937
[32] SORIN F, SHAPIRA O, ABOURADDY A F, et al. Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber[J]. Nano Letters, 2009, 9(7): 2630-2635.
doi: 10.1021/nl9009606 pmid: 19527043
[33] REIN M, LEVY E, GUMENNIK A, et al. Self-assembled fibre optoelectronics with discrete translational symmetry[J]. Nature Communications, 2016, 7(1): 1-8.
[34] DAI Y, DU M, FENG X, et al. Microstructured multimaterial fibers for efficient optical detection[J]. Journal of the American Ceramic Society, 2021, 104(8): 4058-4064.
doi: 10.1111/jace.17827
[35] LOKE G, YUAN R, REIN M, et al. Structured multimaterial filaments for 3D printing of optoelectronics[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[36] CHEN M, WANG Z, ZHANG Q, et al. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing[J]. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w
[37] LEBER A, PAGE A G, YAN D, et al. Compressible and electrically conducting fibers for large-area sensing of pressures[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.201904274.
doi: 10.1002/adfm.201904274
[38] MA Y, OUYANG J, RAZA T, et al. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo[J]. Nano Energy, 2021. DOI:10.1016/j.nanoen.2021.105941.
doi: 10.1016/j.nanoen.2021.105941
[39] YU L, PARKER S, XUAN H, et al. Flexible multi-material fibers for distributed pressure and temperature sensing[J]. Advanced Functional Materials, 2020. DOI:10.1002/adfm.201908915.
doi: 10.1002/adfm.201908915
[40] NGUYEN-DANG T, PAGE A G, QU Y, et al. Multi-material micro-electromechanical fibers with bendable functional domains[J]. Journal of Physics D: Applied Physics, 2017. DOI:10.1088/1361-6463/aa5bf7.
doi: 10.1088/1361-6463/aa5bf7
[41] QU Y, NGUYEN-DANG T, PAGE A G, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing[J]. Advanced Materials, 2018. DOI:10.1002/adma.201707251.
doi: 10.1002/adma.201707251
[42] LEBER A, DONG C, CHANDRAN R, et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations[J]. Nature Electronics, 2020, 3(6): 316-326.
doi: 10.1038/s41928-020-0415-y
[43] GUMENNIK A, STOLYAROV A M, SCHELL B R, et al. All-in-fiber chemical sensing[J]. Advanced Materials, 2012, 24(45): 6005-6009.
doi: 10.1002/adma.201203053
[44] RICHARD I, SCHYRR B, AIASSA S, et al. All-in-fiber electrochemical sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43356-43363.
[45] WU J, HU R, ZENG S, et al. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19015-19022.
[46] ZHANG T, LI K, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41: 35-42.
doi: 10.1016/j.nanoen.2017.09.019
[47] ZHANG J, ZHANG T, ZHANG H, et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics[J]. Advanced Materials, 2020. DOI:10.1002/adma.202002702.
doi: 10.1002/adma.202002702
[48] ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954
[49] WANG R, DU Z, XIA Z, et al. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202107682.
doi: 10.1002/adfm.202107682
[50] KHUDIYEV T, GRENA B, LOKE G, et al. Thermally drawn rechargeable battery fiber enables pervasive power[J]. Materials Today, 2022, 52: 80-89.
doi: 10.1016/j.mattod.2021.11.020
[51] YANG J, WANG Z, WANG Z, et al. All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni-Fe batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12801-12808.
[52] YANG J, ZHANG Q, WANG Z, et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries[J]. Advanced Energy Materials, 2020. DOI: 10.1002/aenm.202100296.
doi: 10.1002/aenm.202100296
[53] PARK S, YUK H, ZHAO R, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-23802-9.
doi: 10.1038/s41467-021-23802-9
[54] GUO Y, JIANG S, GRENA B J B, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces[J]. ACS Nano, 2017, 11(7): 6574-6585.
doi: 10.1021/acsnano.6b07550 pmid: 28570813
[55] LU C, FRORIEP U P, KOPPES R A, et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo[J]. Advanced Functional Materials, 2014, 24(42): 6594-6600.
doi: 10.1002/adfm.201401266
[56] LU C, PARK S, RICHNER T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 2017. DOI:10.1002/aenm.202100296.
doi: 10.1002/aenm.202100296
[57] PARK S, GUO Y, JIA X, et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 2017, 20(4): 612-619.
doi: 10.1038/nn.4510 pmid: 28218915
[58] DU M, HUANG L, ZHENG J, et al. Flexible fiber probe for efficient neural stimulation and detection[J]. Advanced Science, 2020. DOI:10.1002/advs.202001410.
doi: 10.1002/advs.202001410
[59] CHIN A L, JIANG S, JANG E, et al. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-25391-z.
doi: 10.1038/s41467-021-25391-z
[60] CANALES A, JIA X, FRORIEP U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 2015, 33(3): 277-284.
doi: 10.1038/nbt.3093 pmid: 25599177
[61] ANTONINI M J, SAHASRABUDHE A, TABET A, et al. Customizing MRI-compatible multifunctional neural interfaces through fiber drawing[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202104857.
doi: 10.1002/adfm.202104857
[62] JIANG S, PATEL D C, KIM J, et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface[J]. Nature Communications, 2020, 11(1): 1-14.
doi: 10.1038/s41467-019-13993-7
[63] REIN M, FAVROD V D, HOU C, et al. Diode fibres for fabric-based optical communications[J]. Nature, 2018, 560(7717): 214-218.
doi: 10.1038/s41586-018-0390-x
[64] LOKE G, KHUDIYEV T, WANG B, et al. Digital electronics in fibres enable fabric-based machine-learning inference[J]. Nature Communications, 2021. DOI:10.1038/s41467-021-23628-5.
doi: 10.1038/s41467-021-23628-5
[65] LOKE G, ALAIN J, YAN W, et al. Computing fabrics[J]. Matter, 2020, 2(4): 786-788.
doi: 10.1016/j.matt.2020.03.007
[66] CHEN M, JIANG Y, GUIZANI N, et al. Living with I-fabric: smart living powered by intelligent fabric and deep analytics[J]. IEEE Network, 2020, 34(5): 156-163.
[67] CHEN M, LI P, WANG R, et al. Multifunctional fiber-enabled intelligent health agents[J]. Advanced Materials, 2022. DOI:10.1002/adma.202200985.
doi: 10.1002/adma.202200985
[68] CHEN M, WANG R, ZHOU Y, et al. Digital medical education empowered by intelligent fabric space[J]. National Science Open, 2022. DOI:10.1360/nso/20220011.
doi: 10.1360/nso/20220011
[1] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[2] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[3] 吕晓双, 刘丽萍, 俞建勇, 丁彬, 李召岭. 纤维基自供能电子皮肤的构建及其应用性能研究进展[J]. 纺织学报, 2022, 43(10): 183-191.
[4] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
[5] 孙朝续, 刘修才. 生物基聚酰胺56纤维在纺织领域的应用研究进展[J]. 纺织学报, 2021, 42(04): 26-32.
[6] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[7] 吴娇, 于湖生, 万兴云, 田平, 李慧敏, 侯晓欣. 抗菌防螨防霉功能改性粘胶纤维的制备及其性能[J]. 纺织学报, 2019, 40(07): 19-23.
[8] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(05): 170-176.
[9] 杨晨啸 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(05): 160-169.
[10] 秦益民. 海藻酸盐纤维的生物活性和应用功效[J]. 纺织学报, 2018, 39(04): 175-180.
[11] 王松林 相恒学 徐锦龙 成艳华 周哲 孙宾 朱美芳. 通用合成纤维功能化基础问题与发展趋势[J]. 纺织学报, 2018, 39(03): 167-174.
[12] 张克勤 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016, 37(10): 153-157.
[13] 秦益民. 海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2014, 35(4): 148-0.
[14] 杨晓华;赵星洁;刘英华. 二安替比林甲烷分光光度法测定功能纤维中TiO2含量[J]. 纺织学报, 2007, 28(8): 8-11.
[15] 陈驰;但卫华.;曾睿.;米贞健;曲健健;林海. 可生物降解功能纤维的研究进展[J]. 纺织学报, 2006, 27(7): 100-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!