纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 119-128.doi: 10.13475/j.fzxb.20211203910
段亚弟1, 谢巍杰2, 邱海鹏2, 王晓猛2, 王岭2, 张典堂1(), 钱坤1
DUAN Yadi1, XIE Weijie2, QIU Haipeng2, WANG Xiaomeng2, WANG Ling2, ZHANG Diantang1(), QIAN Kun1
摘要:
为探究界面层对SiCf/SiC复合材料性能的影响,选用国产第3代SiC纤维,通过先驱体浸渍裂解工艺制备了热解碳(PyC)、热解碳/碳化硅(PyC/SiC)、氮化硼(BN)、氮化硼/碳化硅(BN/SiC)4种界面层的三维机织角联锁SiCf/SiC复合材料。在此基础上,结合声发射技术对复合材料进行常温断裂韧性测试,并利用扫描电镜对其细观损伤模式进行评价。结果表明:界面层对三维机织角联锁SiCf/SiC复合材料的断裂强度和断裂韧性有强决定作用,但对其初始模量没有太大的影响;以PyC层为主界面层的试样具有良好的断裂韧性,试样P-SiCf/SiC和P/S-SiCf/SiC的断裂韧性分别为13.99和16.93 MPa·m1/2,而试样B-SiCf/SiC表现出强界面结合,具有最低断裂韧性6.47 MPa·m1/2;但在界面引入SiC层后,试样B/S-SiCf/SiC的断裂韧性显著提高至15.81 MPa·m1/2;声发射能量和撞击数可完整描述SiCf/SiC复合材料的实时损伤过程。
中图分类号:
[1] |
KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. J Nucl Mater, 2014, 455(1): 387-397.
doi: 10.1016/j.jnucmat.2014.06.003 |
[2] |
NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science and Technology, 2004, 64(2): 155-170.
doi: 10.1016/S0266-3538(03)00230-6 |
[3] |
LU Z L, YUE J L, FU Z Y, et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500 ℃ in air[J]. Journal of the European Ceramic Society, 2020, 40(8): 2821-2827.
doi: 10.1016/j.jeurceramsoc.2019.04.013 |
[4] |
CARMINATI P, JACQUES S, REBILLAT F. Oxidation/corrosion of BN-based coatings as prospective interphases for SiC/SiC composites[J]. Journal of the European Ceramic Society, 2021, 41(5): 3120-3131.
doi: 10.1016/j.jeurceramsoc.2020.07.056 |
[5] |
NASLAIN R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(9): 1145-1155.
doi: 10.1016/S1359-835X(97)00128-0 |
[6] |
IGAWA N, TAGUCHI T, NOZAWA T, et al. Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties[J]. Journal of Physics and Chemistry of Solids, 2005, 66(2): 551-554.
doi: 10.1016/j.jpcs.2004.06.030 |
[7] | 刘洋. SiC/SiC陶瓷基复合材料损伤失效机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:1-11. |
LIU Yang. The study on damage failure mechanism of SiC/SiC composites[D]. Harbin: Harbin Institute of Technology, 2019:1-11. | |
[8] |
CUI G Y, LUO R Y, WANG L Y, et al. Mechanical properties evolution of SiCf/SiC composites with a BN/SiC multilayer interface oxidized at elevated temperature[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2021.151065.
doi: 10.1016/j.apsusc.2021.151065 |
[9] | 王章文, 张军, 方国东, 等. 界面层对纤维增韧陶瓷基复合材料力学性能影响的研究进展[J]. 装备环境工程, 2020, 17(1): 77-89. |
WANG Zhangwen, ZHANG Jun, FANG Guodong, et al. Effect of interfacial layer on mechanical properties of fiber toughened ceramic matrix composites[J]. Equipment Environmental Engineering, 2020, 17(1): 77-89. | |
[10] | 吕晓旭, 齐哲, 赵文青, 等. SiC/SiC复合材料氮化硼(BN)界面层及其复合界面层研究进展[J]. 航空材料学报, 2019, 39(5): 13-23. |
LÜ Xiaoxu, QI Zhe, ZHAO Wenqing, et al. Research progress of SiC/SiC composite boron nitride (BN) interface layer and its composite interface layer[J]. Journal of Aeronautical Materials, 2019, 39(5): 13-23. | |
[11] |
WANG L Y, LUO R Y, CUI G Y, et al. Oxidation resistance of SiCf/SiC composites with a PyC/SiC multilayer interface at 500 ℃ to 1100 ℃[J]. Corrosion Science, 2020.DOI: 10.1016/j.corsci.2020.108522.
doi: 10.1016/j.corsci.2020.108522 |
[12] | 于海蛟. 多层界面制备、表征及其对SiC/SiC复合材料性能的影响[D]. 长沙: 国防科学技术大学, 2011: 25-118. |
YU Haijiao. Preparation and characterization of multilayer interfaces and their effects on properties of SiC/SiC composites[D]. Changsha: National University of Defense Technology, 2011: 25-118. | |
[13] |
YANG W, NODA T, ARAKI H, et al. Mechanical properties of several advanced Tyranno-SA fiber-reinforced CVI-SiC matrix composites[J]. Materials Science and Engineering A, 2003, 345(1): 28-35.
doi: 10.1016/S0921-5093(02)00468-9 |
[14] | 蒋丽娟, 侯振华, 周寅智. 预制体结构及界面对三维SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020, 37(3): 642-649. |
JIANG Lijuan, HOU Zhenhua, ZHOU Yinzhi. Effect of preform structure and interface types on tensile properties of 3D SiC/SiC composites[J]. Acta Materiae Composites Sinic, 2020, 37(3): 642-649. | |
[15] | 赵文青, 齐哲, 吕晓旭, 等. 界面层对CVI-mini SiCf/SiC复合材料力学性能的影响[J]. 材料工程, 2021, 49(7): 71-77. |
ZHAO Wenqing, QI Zhe, LÜ Xiaoxu, et al. Effect of interfacial layer on mechanical properties of CVI-mini SiCf/SiC composites[J]. Journal of Materials Engineering, 2021, 49(7): 71-77. | |
[16] |
吕晓旭, 姜卓钰, 周怡然, 等. BN/SiC复合界面层对SiC纤维和PIP-Mini复合材料力学性能的影响[J]. 无机材料学报, 2020, 35(10): 1099-1104.
doi: 10.15541/jim20190646 |
LÜ Xiaoxu, JIANG Zhuoyu, ZHOU Yiran, et al. Effect of BN/SiC interfacial layer on mechanical properties of SiC fiber and PIP-mini composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1099-1104.
doi: 10.15541/jim20190646 |
|
[17] |
DAI J, WANG Y, XU Z, et al. Effect of BN/SiC interfacial coatings on the tensile properties of SiC/SiC minicomposites fabricated by PIP[J]. Ceram Int, 2020, 46(16): 25058-25065.
doi: 10.1016/j.ceramint.2020.06.292 |
[18] |
PANKOW M, SALVI A, WAAS A M, et al. Resistance to delamination of 3D woven textile composites evaluated using end notch flexure (ENF)tests: experimental results[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1463-1476.
doi: 10.1016/j.compositesa.2011.06.013 |
[19] | WANG P, LIU F, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12): 2743-2750. |
[20] | 王富强, 嵇阿琳, 白侠, 等. 单边切口梁法测试针刺C/C复合材料断裂韧性[J]. 固体火箭技术, 2013, 36(4): 564-568. |
WANG Fuqiang, JI Alin, BAI Xia, et al. Fracture toughness of needled C/C composite by single notch beam method[J]. Solid Rocket Technology, 2013, 36(4): 564-568. | |
[21] |
SHULER S F, HOLMES J W, WU X, et al. Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite[J]. Am Ceram Soc, 1993, 76(9): 2327-2336.
doi: 10.1111/j.1151-2916.1993.tb07772.x |
[22] |
XUE Y D, HU J B, ZHOU H J, et al. Damage development of a woven SiCf/SiC composite during multi-step fatigue tests at room temperature[J]. Ceram Int, 2020, 46(14): 22116-22126.
doi: 10.1016/j.ceramint.2020.05.270 |
[23] |
GAO Y, XIAO D H, HE T, et al. Identification of damage mechanisms of carbon fiber reinforced silicon carbide composites under static loading using acoustic emission monitoring[J]. Ceram Int, 2019, 45(11): 13847-13858.
doi: 10.1016/j.ceramint.2019.04.082 |
[24] |
CUI G Y, LUO R Y, WANG L Y, et al. Effect of SiC nanowires on the mechanical properties and thermal conductivity of 3D-SiCf/SiC composites prepared via precursor infiltration pyrolysis[J]. Journal of the European Ceramic Society, 2021, 41(10): 5026-5035.
doi: 10.1016/j.jeurceramsoc.2021.04.003 |
[1] | 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80. |
[2] | 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89. |
[3] | 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80. |
[4] | 张燕南, 周伟, 商雅静, 赵文政. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报, 2019, 40(08): 55-63. |
[5] | 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24. |
[6] | 王旭;晏雄. 聚乙烯自增强复合材料损伤行为的声发射特征[J]. 纺织学报, 2010, 31(3): 27-31. |
[7] | 万振凯. 三维编织复合材料拉伸与弯曲声发射特征分析[J]. 纺织学报, 2007, 28(4): 52-55. |
[8] | 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20-24. |
[9] | 焦亚男;李晓久;董孚允. 三维缝合复合材料性能研究[J]. 纺织学报, 2002, 23(02): 16-18. |
|