纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 179-187.doi: 10.13475/j.fzxb.20210911809

• 机械与器材 • 上一篇    下一篇

基于改进型RFB-MobileNetV3的棉杂图像检测

徐健1(), 胡道杰1, 刘秀平1, 韩琳1, 闫焕营2   

  1. 1.西安工程大学 电子信息学院, 陕西 西安 710048
    2.深圳罗博泰尔机器人技术有限公司, 广东 深圳 518109
  • 收稿日期:2021-09-29 修回日期:2022-06-13 出版日期:2023-01-15 发布日期:2023-02-16
  • 作者简介:徐健(1963—),男,教授。主要研究方向为机器视觉、目标检测和目标跟踪。E-mail:xu0910@sina.com
  • 基金资助:
    西安市科技局高校人才服务企业项目(GXYD7.5);陕西省科技厅工业领域一般项目(2018GY-173)

Cotton impurity image detection based on improved RFB-MobileNetV3

XU Jian1(), HU Daojie1, LIU Xiuping1, HAN Lin1, YAN Huanying2   

  1. 1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shenzhen Municipal Robotel Robot Technology Co., Ltd., Shenzhen, Guangdong 518109, China
  • Received:2021-09-29 Revised:2022-06-13 Published:2023-01-15 Online:2023-02-16

摘要:

针对深度卷积神经网络模型复杂导致嵌入式设备难以满足实时在线检测的问题,提出改进型RFB-MobileNetV3(RFB-MNV3)的棉杂检测方法。首先,根据高精度轻量化网络模型的构建和保证检测准确率高的前提下,减少MNV3冗余网络结构;其次,将3×3卷积层取代5×5卷积层,1×3+3×1卷积层折叠取代3×3卷积层作为改进型感受野(RFB)模块部署到改进型MNV3的池化层中,以提升棉杂的在线检测速度和准确率;最后,将改进前后的算法与其它检测算法进行比较。结果表明,改进型RFB-MNV3算法的单张检测速度可达到0.02 s,在线检测平均准确率达到89.05%。通过对MNV3网络结构进行改进,在保证高检测准确率的前提下,可满足嵌入式设备在线棉杂检测的需求。

关键词: RFB-MobileNetV3, 棉杂, 在线检测, 网络结构, 轻量化模型, 图像检测

Abstract:

Objective The complexity of deep convolutional neural network models makes it difficult for embedded devices to meet real-time online detection, and this research works on an improved RFB-MobileNetV3(RFB-MNV3) method for cotton impurity detection.
Method Firstly, the MNV3 redundant network structure was reduced according to the construction of high-precision lightweight network model and the premise of ensuring high detection accuracy. Secondly, the 3×3 convolutional layer replaced the 5×5 convolutional layer and the 1×3+3×1 convolutional layer was folded to replace the 3×3 convolutional layer as the improved RFB module deployed to the pooling layer of the improved MNV3 to enhance the online detection speed and accuracy of cotton hash. Finally, the algorithm before and after the improvement and other detection algorithms were compared.
Results The influence of training times, different lighting changes and different camera shift poses on the model was investigated using the test set. The improved RFB-MNV3 network model was iteratively trained to improve the average accuracy of cotton impurity classification. The specific classification detection effect under the improved RFB-MNV3 model showed that the detection accuracy was 83%-96% as suggested by the average AP values of the detection results for each category, among which the best effect was achieved in identifying cotton seeds with 96% accuracy (Fig.11). The value of the improved RFB-MNV3 algorithm reached 88.15%, indicating that the accuracy and score (the score of impurity detection under the optimized algorithm) have reasonably high stability, i.e. the model can better classify cotton impurity detection and can basically meet the actual industrial production needs. The detection results were compared with those of the MNV3, YOLOv3, VGG16 and ResNet34 network models (Tab.2). The detection time of the improved RFB-MNV3 model reached 0.02 s, and the online detection accuracy of the improved RFB-MNV3 model reached 89.05%, which is 6.83% higher than MNV3 and 8.48%-17.32% higher than other network models. The average accuracy mean combined with the accuracy and recall rates can be utilized to evaluate the comprehensive performance of image classification. It can be seen that the improved RFB-MNV3 model has a mean accuracy value that is 6.31% higher than MNV3 and 8.76%-17.72% higher than other networks.
Conclusion The new network is improved on the basis of the MNV3 detection network, while the improved RFB-MNV3 module is combined to achieve the purpose of reducing the model parameters without basically losing the model accuracy, solving the problem that the complexity of the deep convolutional neural network model makes it difficult for the embedded device to meet the real-time online detection. The model proposed can effectively achieve the detection of lint images, while the model detection efficiency is high and the storage occupied is small, which can provide the necessary technical support for the development of embedded devices for lint image detection.

Key words: RFB-MobileNetV3, cotton impurity, online detection, network structure, lightweight model, image detection

中图分类号: 

  • TP391.41

图1

MNV3 block结构图"

图2

检测流程"

表1

改进后的MNV3结构"

网络结构 输入分辨率/像素 输出通道数 网络层数
Conv3×3 640 ×480 16 1
Bottleneck3×3 320×240 24 2
Bottleneck5×5 160×80 40 2
Bottleneck5×5 80×80 80 2
Conv1×1、Pooling 40×40 120 1
Conv1×1 1×1 240 1
Conv1×1 1×1 6 1

图3

改进型RFB模块结构图"

图4

棉杂标注图"

图5

可视化特征图"

图6

改进前后模型对单类棉杂检测结果"

图7

改进前后模型对多类棉杂检测结果"

图8

不同相机位姿的检测结果"

图9

不同光照条件下的检测结果"

图10

棉杂分类平均准确率"

图11

改进型RFB-MNV3分类检测效果"

表2

不同模型下的检测效果对比"

模型 参数量/
106
检测时间/
s
平均准
确率/%
召回率/
%
平均准确率
均值/%
MNV3 1.41 262 82.22 81.47 81.84
RFB-MNV3 0.09 87 89.05 87.25 88.15
YOLOv3 2.63 291 80.57 78.21 79.39
VGG16 17.38 289 73.28 71.63 72.45
ResNet34 19.37 320 71.73 70.87 70.43

图12

各类算法检测结果对比"

[1] 程文. 棉花种植技术和病虫害防治措施[J]. 河南农业, 2022(8):8-9.
CHENG Wen. Cotton planting technology and pest control measures[J]. Henan Agriculture, 2022(8):8-9.
[2] 田景山, 王文敏, 王聪, 等. 机械采收方式对新疆棉品质的影响[J]. 纺织学报, 2016, 37(7):13-17.
TIAN Jingshan, WANG Wenmin, WANG Cong, et al. Effect of mechanical harvesting methods on the quality of Xinjiang cotton[J]. Journal of Textile Research, 2016, 37(7): 13-17.
[3] 周建, 潘如如, 高卫东. 机器视觉在纺织中的应用现状与发展趋势[J]. 棉纺织技术, 2019, 47(2):15-17.
ZHOU Jian, PAN Rugru, GAO Weidong. Application status and development trend of machine vision in textile[J]. Cotton Textile Technology, 2019, 47(2): 15-17.
[4] 景军锋, 郭根. 基于机器视觉的丝饼毛羽检测[J]. 纺织学报, 2019, 40(1):147-152.
JING Junfeng, GUO Gen. Machine vision-based lint detection of silk cake[J]. Journal of Textile Research, 2019, 40(1):147-152.
doi: 10.1177/004051757004000208
[5] 杜玉红, 王加富, 蒋秀明, 等. 应用聚类统计分析的棉花异纤图形检测算法[J]. 纺织学报, 2015, 36(3):135-139.
DU Yuhong, WANG Jiafu, JIANG Xiuming, et al. A graphical detection algorithm for cotton heterofibers applying cluster statistical analysis[J]. Journal of Textile Research, 2015, 36(3): 135-139.
[6] 齐英兰. 基于高低阈值迭代优化的原棉图像杂质检测[J]. 现代纺织技术, 2019, 27(5):50-53.
QI Yinglan. Image impurity detection of raw cotton based on high and low threshold iterative optimi-zation[J]. Advanced Textile Technology, 2019, 27(5): 50-53.
[7] 李龙. 基于改进Mobile-Net-V2的原棉杂质分类方法[J]. 毛纺科技, 2021, 49(2):83-88.
LI Long. Impurity Classification method of raw cotton based on improved Mobile-Net-V2[J]. Wool Textile Journal, 2021, 49(2): 83-88.
[8] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:ICCV, 2019:1314-1324.
[9] LANGER Sophie. Approximating smooth functions by deep neural networks with sigmoid activation function[J]. Journal of Multivariate Analysis, 2021, 182(10): 96-104.
[10] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C]// Proceedings of the European Conference on Computer Vision (ECCV).Munich:ECCV, 2018: 385-400.
[11] 董超群, 杜玉红, 任维佳, 等. 应用光学成像技术检测棉花中异性纤维的研究进展[J]. 纺织学报, 2020, 41(6):183-189.
DONG Chaoqun, DU Yuhong, REN Weijia, et al. Research progress on the application of optical imaging technology for the detection of anisotropic fibers in cotton[J]. Journal of Textile Research, 2020, 41(6): 183-189.
[12] 陈晓妮, 汪军, 陈庆东. 棉花检测能力认证活动中统计模型的应用[J]. 纺织学报, 2012, 33(10):33-36.
CHEN Xiaoni, WANG Jun, CHEN Qingdong. Application of statistical models in cotton testing capability certification activities[J]. Journal of Textile Research, 2012, 33(10): 33-36.
[13] 高伟, 王志衡, 赵训坡, 等. 基于HSI颜色空间的棉花杂质高速实时检测方法[J]. 自动化学报, 2008, 34(7): 729-735.
GAO Wei, WANG Zhiheng, ZHAO Xunpo, et al. High-speed real-time detection method of cotton impurities based on HSI colour space[J]. Journal of Automation, 2008, 34(7): 729-735.
[14] YANG Wenzhu, LI Daoliang, WANG Sile, et al. Saliency-based color image segmentation in foreign fiber detection[J]. Mathematical and Computer Modelling, 2013, 58(3/4): 852-858.
doi: 10.1016/j.mcm.2012.12.016
[15] 徐健, 陆珍, 刘秀平, 等. 注意力机制优化RetinaNet的密集工件检测方法研究[J]. 电子测量与仪器学报, 2022, 36(1):227-235.
XU Jian, LU Zhen, LIU Xiuping, et al. Research on dense artifact detection method with attention mechanism optimized RetinaNet[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(1):227-235.
[1] 陆浩杰, 李曼丽, 金恩琪, 张宏伟, 周赳. 基于弧形电容器的浆纱回潮率在线测量[J]. 纺织学报, 2023, 44(01): 201-208.
[2] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6.
[3] 郭敏, 王静安, 郭明瑞, 高卫东. 基于毛羽图像检测的浆纱抗起毛性能评价[J]. 纺织学报, 2022, 43(03): 78-82.
[4] 任维佳, 杜玉红, 左恒力, 袁汝旺. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204.
[5] 季勇, 蒋高明. 基于学习功能的人体模型表达与实现[J]. 纺织学报, 2021, 42(10): 146-149.
[6] 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺织学报, 2020, 41(12): 137-143.
[7] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[8] 常永和 薛元 韩晨晨 杨瑞华 高卫东 张毅. 环锭纺导纱板受力信号在线检测及纺纱张力分析[J]. 纺织学报, 2018, 39(09): 146-152.
[9] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[10] 吕汉明 王晓叶 马崇启. 基于电容传感器的醋酸纤维含油率检测[J]. 纺织学报, 2017, 38(06): 106-110.
[11] 姜生 倪诗吟 张利娟. 锦纶对纺织废胶-受阻酚微观形态与性能的影响[J]. 纺织学报, 2017, 38(03): 72-77.
[12] 李强 杨艺 刘基宏 高娜. 赛络纺粗纱断纱在线检测[J]. 纺织学报, 2016, 37(10): 120-0124.
[13] 宋晓亮 刘建立 徐阳 刘基宏 高卫东. 光电式环锭断纱在线检测系统[J]. 纺织学报, 2014, 35(8): 94-0.
[14] 汪军. 环锭纺纱线质量检测技术发展现状及趋势[J]. 纺织学报, 2013, 34(6): 131-136.
[15] 姚俊红. 络筒机用计长仪的研制[J]. 纺织学报, 2012, 33(9): 126-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[3] 郑天勇.;崔世忠. 用B样条曲面构建纱线三维模型的研究(Ⅱ):纱线捻度的三维模拟[J]. 纺织学报, 2006, 27(3): 24 -26 .
[4] 万玉芹;吴丽莉;俞建勇. 竹纤维吸湿性能研究[J]. 纺织学报, 2004, 25(03): 14 -15 .
[5] 罗佑新;李晓峰. 苎麻纤维回潮率测试的不确定性系统模型USM-1[J]. 纺织学报, 2005, 26(1): 42 -43 .
[6] 杨明煜. 现代生物技术在纺织纤维中的开发与应用[J]. 纺织学报, 2003, 24(06): 87 -88 .
[7] 吕荣文;高崑玉. 超细纤维用分散染料染色性能研究[J]. 纺织学报, 2004, 25(04): 60 -61 .
[8] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82 -86 .
[9] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[10] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .