纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 38-46.doi: 10.13475/j.fzxb.20220702009
张倩1,2, 牛文鑫3, 姜成华3, 高晶1,2(), 王璐1,2
ZHANG Qian1,2, NIU Wenxin3, JIANG Chenghua3, GAO Jing1,2(), WANG Lu1,2
摘要:
针对航天员在微重力环境下的肌肉骨骼去重力性适应问题,以人体生物力学与服装功效学为研究背景,介绍了对抗微重力环境的压力服装的研究现状,分析了空间站现用压力服装和文献报道中的原型服装的对抗机制和结构功效特点,总结并完善现有评价方法。研究认为:该类压力服装存在重力加载量不足、性能测试单一的问题,应深入优化纺织成形工艺,探究服装力学性能与人体所需载荷的关系,结合多学科技术,全面评价服装加载功能性、穿着舒适性和人体生理适应性;研发持久稳定、透湿舒适的新型材料,提高评价方法的智能化和准确性以及将该航空压力服装技术转化为卧床患者康复措施是未来的发展方向。
中图分类号:
[1] |
RADOSTIN P, RICHARD S A, ADAM S T, et al. Back pain in outer space[J]. Anesthesiology, 2021, 135(3):384-395.
doi: 10.1097/ALN.0000000000003812 pmid: 33979426 |
[2] | 吕松泽, 李小涛, 王惠娟, 等. 航天失重对人体的生理影响及对抗研究进展[J]. 医学争鸣, 2022, 43(2):86-90. |
LÜ Songze, LI Xiaotao, WANG Huijuan, et al. Advances in physiological effects of space weightlessness on human body and its countermeasures[J]. Negative, 2022, 43(2):86-90. | |
[3] |
DANIEL K O, SAWAN D, VIGNESH R, et al. Crew-friendly countermeasures against musculoskeletal injuries in aviation and spaceflight[J]. Frontiers in Physiology, 2020. DOI: 10.3389/fphys.2020.00837.
doi: 10.3389/fphys.2020.00837 |
[4] |
JOEY M, TAYLOR G, GEORGINA S, et al. The effects of microgravity on bone structure and function[J]. NPJ Microgravity, 2022, 8(1):9.
doi: 10.1038/s41526-022-00194-8 pmid: 35383182 |
[5] | 冯金升, 吴斌, 安春燕, 等. 航天飞行对人体脊柱影响的相关研究[J]. 颈腰痛杂志, 2020, 41(3):365-367. |
FENG Jinsheng, WU Bin, AN Chunyan, et al. Studies related to the effects of space flight on the human spine[J]. The Journal of Cervicodynia and Lumbodynia, 2020, 41(3):365-367. | |
[6] | JOANNE G. Compression garments 101[J]. Plastic Surgical Nuersing, 2007, 27(2):73-77. |
[7] | 徐水红, 闫利, 马爱军, 等. 航天特因环境影响及有关选拔训练项目和模拟方法[J]. 航天器环境工程, 2019, 36(1):1-6. |
XU Shuihong, YAN Li, MA Aijun, et al. The space special environments, the selection & training programs and the environmental simulation method[J]. Spacecraft Environment Engineering, 2019, 36(1):1-6. | |
[8] | 张万欣, 李潭秋, 尚坤, 等. 航天服压力防护技术发展与构想[J]. 航天医学与医学工程, 2018, 31(2):121-130. |
ZHANG Wanxin, LI Tanqiu, SHANG Kun, et al. Developments and conceptions of pressure protection technology in spacesuit[J]. Space Medicine & Medical Engineering, 2018, 31(2):121-130. | |
[9] |
WESSENDORF A M, NEWMAN D J. Dynamic understanding of human-skin movement and strain-field analysis[J]. IEEE Transactions on Bio-medical Engineering, 2012, 59(12):3432-3438.
doi: 10.1109/TBME.2012.2215859 pmid: 22961262 |
[10] | NEWMAN D J, CANINA M, TROTTI G L. Revolutionary design for astronaut exploration-beyond the bio-suit system[J]. AIP Conference Proceedings, 2007, 880(1):975-986. |
[11] | OBROPTA E W, NEWMAN D J. A comparison of human skin strain fields of the elbow joint for mechanical counter pressure space suit development[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2015:1-9. |
[12] | OBROPTA E W, NEWMAN D J. Skin strain fields at the shoulder joint for mechanical counter pressure space suit development[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2016:1-9. |
[13] |
JORGE B, FRANCISCOR S, JAVIER A S F, et al. In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22(15):1219-1228.
doi: 10.1080/10255842.2019.1655549 |
[14] | PORTER A P, MARCHESINI B, POTRYASILOVA I, et al. Soft exoskeleton knee prototype for advanced space suits and planetary exploration[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2020:7-14. |
[15] | 郑嵘, 刘志鹏, 陈晴, 等. 基于机械反压航天服的人体手臂非延长线网络绘制方法研究[J]. 载人航天, 2022, 28(2):159-167. |
ZHENG Rong, LIU Zhipeng, CHEN Qing, et al. Research on LoNEs drawing method of human arm for MCP space suit development[J]. Manned Spaceflight, 2022, 28(2):159-167. | |
[16] | 刘亚楠, 贾镇远. 抗荷服的发展综述[J]. 甘肃科技, 2015, 31(18):15-16. |
LIU Yanan, JIA Zhenyuan. An overview of the development of anti-charge clothing[J]. Gansu Science and Technology, 2015, 31(18):15-16. | |
[17] | 王红, 李宝辉, 张立辉, 等. 新型综合抗荷措施对快增长率模式高过载暴露防护效果的研究[J]. 空军医学杂志, 2020, 36(5):376-380. |
WANG Hong, LI Baohui, ZHANG Lihui, et al. The rapid onset rate high G protection effect of a new integrated anti-G measures[J]. Medical Journal of Air Force, 2020, 36(5):376-380. | |
[18] |
KOZLOVSKAYA I B, GRIGORIEV A I, STEPANTZOV V I. Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights[J]. Acta Astronautica, 1995, 36(8):661-668.
doi: 10.1016/0094-5765(95)00156-5 |
[19] | ARTILES D A, TRIGG C, JETHANI H, et al. Physiological and comfort assessment of the gravity loading countermeasure skinsuit during exercise[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2016:1-10. |
[20] |
KOZLOVSKAYA I B, GRIGORIEV A I. Russian system of countermeasures on board of the International Space Station (ISS): the first results[J]. Acta Astronautica, 2004, 55(3):233-237.
doi: 10.1016/j.actaastro.2004.05.049 |
[21] |
OHIRA Y, YOSHINAGE T, NONAKA I, et al. Histochemical responses of human soleus muscle fibers to long-term bedrest with or without counter-measures[J]. The Japanese Journal of Physiology, 2000, 50(1):41-47.
doi: 10.2170/jjphysiol.50.41 |
[22] | 李志利, 姜世忠. 长期失重生理效应体育锻炼防护措施研究进展[J]. 载人航天, 2011, 17(1):23-27. |
LI Zhili, JIANG Shizhong. Development of physical exercise countermeasures for physiological decrements associated with long duration weightlessness[J]. Manned Spaceflight, 2011, 17(1):23-27. | |
[23] |
YARMANOVA E N, KOZLOVSKAYA I B, KHIMORODA N N, et al. Evolution of Russian microgravity countermeasures[J]. Aerospace Medicine and Human Performance, 2015, 86(12):32-37.
doi: 10.3357/AMHP.EC05.2015 |
[24] |
SEMENOVA K A. Basis for a method of dynamic proprioceptive correction in the restorative treatment of patients with residual-stage infantile cerebral palsy[J]. Neuroscience and Behavioral Physiology, 1997, 27(6):639-643.
doi: 10.1007/BF02461920 pmid: 9406213 |
[25] |
YAMASHITA K, OKUYAMA R, HONDA M, et al. Maximal and submaximal forces of slow fibers in human soleus after bed rest[J]. Journal of Applied Physiology, 2001, 91(1):417-424.
doi: 10.1152/jappl.2001.91.1.417 |
[26] |
KOZLOVSKAYA I B, YARMANOVA E N, YEGOROV A D, et al. Russian countermeasure systems for adverse effects of microgravity on long-duration ISS flights[J]. Aerospace Medicine and Human Performance, 2015, 86(12):24-31.
doi: 10.3357/AMHP.EC04.2015 |
[27] |
KOZLOVSKAYA I B, YARMANOVA E N, FOMINA E V. The Russian system of preventive countermeasures: its present and future[J]. Human Physiology, 2015, 41(7):704-711.
doi: 10.1134/S0362119715070075 |
[28] |
BOGOMOLOV V V, GRIGORIEV A I, KOZLOVSKAYA I B. The russian experience in medical care and health maintenance of the international space station crews[J]. Acta Astronautica, 2006, 60(4):237-246.
doi: 10.1016/j.actaastro.2006.08.014 |
[29] |
GREENA D A, SCOTT J P R. Spinal health during unloading and reloading associated with spaceflight[J]. Frontiers in Physiology, 2017. DOI: 10.3389/fphys.2017.01126.
doi: 10.3389/fphys.2017.01126 |
[30] |
SAYSON J V, LOTZ J, PARAZYNSKI S, et al. Back pain in space and post-flight spine injury: mechanisms and countermeasure development[J]. Acta Astronautica, 2013, 86:24-38.
doi: 10.1016/j.actaastro.2012.05.016 |
[31] |
PEIHONG C, SHINJI K, BRANDON B R, et al. Exercise within lower body negative pressure partially counteracts lumbar spine deconditioning associated with 28-day bed rest[J]. Journal of Applied Physiology, 2005, 99(1):39-44.
pmid: 15761083 |
[32] |
SHANKHWAR V, SINGH D, DEEPAK K K. Effect of novel designed bodygear on gastrocnemius and soleus muscles during stepping in human body[J]. Microgravity Science and Technology, 2021. DOI: 10.1007/s12217-021-09870-y.
doi: 10.1007/s12217-021-09870-y |
[33] |
SHANKHWAR V, SINGH D, DEEPAK K K. Effect of countermeasure bodygear on cardiac-vascular-respiratory coupling during 6-degree head-down tilt: an earth-based microgravity study[J]. Life Sciences in Space Research, 2022, 32:45-53.
doi: 10.1016/j.lssr.2021.10.004 pmid: 35065760 |
[34] |
SHANKHWAR V, SINGH D, DEEPAK K K. Characterization of electromyographical signals from biceps and rectus femoris muscles to evaluate the performance of squats coupled with countermeasure gravitational load modulating bodygear[J]. Microgravity Science and Technology, 2021. DOI: 10.1007/s12217-021-09899-z.
doi: 10.1007/s12217-021-09899-z |
[35] | BELLISLE R, NEWMAN D. Countermeasure suits for spaceflight[C]// International Conference on Environmental System. Sydney: ICES, 2020:1-12. |
[36] |
ATTIAS J, PHILIP A T C, WALDIE J, et al. The gravity-loading countermeasure skinsuit (GLCS) and its effect upon aerobic exercise performance[J]. Acta Astronautica, 2017, 132:111-116.
doi: 10.1016/j.actaastro.2016.12.001 |
[37] | WALDIE J M, NEWMAN D J. A gravity loading countermeasure skinsuit[J]. Acta Astronautica, 2010, 68(7):772-730. |
[38] |
CARVIL P A, JULIA A, SIMON E, et al. The effect of the gravity loading countermeasure skinsuit upon movement and strength[J]. Journal of Strength and Conditioning Research, 2017, 31(1):154-161.
doi: 10.1519/JSC.0000000000001460 pmid: 27135470 |
[39] |
STABLER R A, HELENA R, RONAN D, et al. Impact of the Mk VI skinsuit on skin microbiota of terrestrial volunteers and an international space station-bound astronaut[J]. NPJ Microgravity, 2017. DOI: 10.1038/s41526-017-0029-5.
doi: 10.1038/s41526-017-0029-5 |
[40] | 孙喜庆, 姚永杰, 吴兴裕, 等. 下体负压裤的研制与应用[J]. 中华航空航天医学杂志, 2001(1):57-59. |
SUN Xiqing, YAO Yongjie, WU Xingyu, et al. Development and application of lower body negative pressure suit[J]. Chinese Journal of Aerospace Medicine, 2001(1):57-59. | |
[41] |
CAMOBELL M R, CHARLES J B. Historical review of lower body negative pressure research in space medicine[J]. Aerospace Medicine and Human Performance, 2015, 86(7):633-640.
doi: 10.3357/AMHP.4246.2015 pmid: 26102144 |
[42] |
PETERSEN L G, HARGENS A, BIRD E M, et al. Mobile lower body negative pressure suit as an integrative countermeasure for spaceflight[J]. Aerospace Medicine and Human Performance, 2019, 90(12):993-999.
doi: 10.3357/AMHP.5408.2019 pmid: 31747995 |
[43] |
NEEKI A, HARGENS A. The mobile lower body negative pressure gravity suit for long-duration spaceflight[J]. Frontiers in Physiology, 2020. DOI: 10.3389/fphys.2020.00977.
doi: 10.3389/fphys.2020.00977 |
[44] | 张浩. 微重力环境下对抗骨质疏松的生物力学机理模拟研究[D]. 天津: 天津理工大学, 2022:53-54. |
ZHANG Hao. Simulation study on biomechanical mechanism of fighting osteoporosis in microgravity[D]. Tianjin: Tianjin University of Technology, 2022: 53-54. | |
[45] |
THEO F, CORENTIN G, LAURENCE S, et al. Early deconditioning of human skeletal muscles and the effects of a thigh cuff countermeasure[J]. International Journal of Molecular Sciences, 2021. DOI: 10.3390/ijms222112064.
doi: 10.3390/ijms222112064 |
[46] |
THERESE L M, LAURA P, PETER F, et al. DI-5-cuffs: bone remodelling and associated metabolism markers in humans after five days of dry immersion to simulate microgravity[J]. Frontiers in Physiology, 2022. DOI: 10.3389/fphys.2022.801448.
doi: 10.3389/fphys.2022.801448 |
[47] |
LAZZARI A T, ARIA K M, RICHARD M. Neurosurgery and spinal adaptations in spaceflight: a literature review[J]. Clinical Neurology and Neurosurgery, 2021. DOI: 10.1016/j.clineuro.2021.106755.
doi: 10.1016/j.clineuro.2021.106755 |
[48] | 苗龙龙. 太空跑台造型设计与研究[D]. 太原: 太原理工大学, 2016:11. |
MIAO Longlong. The research and form design of space treadmill[D]. Taiyuan: Taiyuan University of Technology, 2016:11. | |
[49] |
ENGLISH K L, BLOOMBERG J J, MULAVARA A P, et al. Exercise countermeasures to neuromuscular deconditioning in spaceflight[J]. Comprehensive Physiology, 2019, 10(1):171-196.
doi: 10.1002/cphy.c190005 pmid: 31853963 |
[50] | 金贵玉, 程伟. 服装压力舒适性主要影响因素和压力测量方法[J]. 针织工业, 2022(5):75-79. |
JING Guiyu, CHENG Wei. Main factors affecting clothing pressure comfort and measurement methods[J]. Knitting Industries, 2022(5):75-79. | |
[51] |
CORLETT E N, BISHOP R P. A technique for assessing postural discomfort[J]. Ergonomics, 1976, 19(2):175-182.
pmid: 1278144 |
[52] |
BORG G A. Psychophysical bases of perceived exertion[J]. Medicine and Science in Sports and Exercise, 1982, 14(5):377-381.
pmid: 7154893 |
[1] | 戴家木, 聂渡, 李素英, 张瑜, 张伟, 刘蓉. 纤维基人工神经导管的研究进展[J]. 纺织学报, 2022, 43(12): 190-196. |
[2] | 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79. |
[3] | 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177. |
[4] | 丁许, 孙颖, 罗敏, 王兴泽, 陈利, 陈光伟. 航天器用高性能纤维编织绳索研究进展[J]. 纺织学报, 2021, 42(12): 180-187. |
[5] | 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
[6] | 李强林, 黄方千, 肖秀婵, 邱诚, 吴菊珍. 新型无卤聚合物阻燃剂的研究进展[J]. 纺织学报, 2019, 40(04): 177-184. |
[7] | 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107. |
[8] | 张小萍 王君泽. 二步法三维编织物仿真模型研究[J]. 纺织学报, 2011, 32(10): 147-. |
[9] | 张小萍;王君泽. 基于Web的三维编织物仿真系统研制[J]. 纺织学报, 2010, 31(2): 129-132. |
|