纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 47-55.doi: 10.13475/j.fzxb.20220709209

• 特约专栏:纺织科技前沿 • 上一篇    下一篇

花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维

陈琛1, 韩燚1, 孙海燕1, 姚诚凯1, 高超1,2()   

  1. 1.杭州高烯科技有限公司, 浙江 杭州 311113
    2.浙江大学 高分子科学与工程学系, 浙江 杭州 310013
  • 收稿日期:2022-07-27 修回日期:2022-10-29 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 高超(1973—),男,教授,博士。主要研究方向为石墨烯宏观组装材料、石墨烯复合材料。E-mail:lcgao18@163.com
  • 作者简介:陈琛(1991—),男,工程师,博士。主要研究方向为石墨烯复合材料、知识产权保护。
  • 基金资助:
    国家自然科学基金项目(52090030);中央高校基本科研业务费专项资金资助项目(2021FZZX001-17);杭州市领军型创新团队计划项目(2018TD02);山西浙大新材料与化工研究院技术开发项目(2022SZ-TD012)

Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof

CHEN Chen1, HAN Yi1, SUN Haiyan1, YAO Chengkai1, GAO Chao1,2()   

  1. 1. Hangzhou Gaoxi Technology Co., Ltd., Hangzhou, Zhejiang 311113, China
    2. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310013, China
  • Received:2022-07-27 Revised:2022-10-29 Published:2023-01-15 Online:2023-02-16

摘要:

为实现复合纤维中石墨烯的分子级分散,从而改善现有石墨烯复合纤维制成率低、强度低、耐用性差等问题,提出了一种原位展开共聚的机制,使得聚酰胺6(PA6)分子接枝的石墨烯片能够均匀分散在体系内,从而批量制备多功能PA6/石墨烯纤维,建立起全新的纤维制备-加工-性能一体化系统,实现了多功能性和高力学性能的兼顾。结果表明:在聚合过程中,花状氧化石墨烯呈现出逐步展开、分散的形貌变化,同时参与聚合反应中;反应结束后,PA6分子均匀接枝在石墨烯片表面,并诱导PA6发生了晶型转变;加入0.1%石墨烯后复合纤维单丝的拉伸强度相比纯PA6纤维提高25.4%,拉伸模量提高49.5%;此外,石墨烯复合PA6面料兼具优异的抗菌、抗病毒、远红外发射、负离子发生、防紫外线等功能,具有广阔的市场前景。

关键词: 石墨烯, 聚酰胺6, 复合纤维, 多功能纤维, 原位聚合, 抗菌, 高速纺丝

Abstract:

Objective Graphene has the highest mechanical strength, electrical conductivity and thermal conductivity among all known materials, with unique characteristics in optics, acoustics, electromagnetism, catalysis and so on. Therefore, the combination of conventional materials and graphene would lead to novel composite materials with high performance and multi-functions. Among them, graphene composite fibers have been extensively explored in the last decade. Compared with conventional fibers, graphene composite fibers have demonstrated obvious advantages in mechanical strength, thermal conductivity, electrical conductivity, flame retardancy, antibacterial property, far infrared emission, UV protection, corrosion resistance and other properties. However, blending and surface treatment methods lead to defects in mechanical properties, durability, color diversity and weaving of composite fibers, which needs to be further improved.
Method An in-situ unfolding polymerization strategy was introduced to massively prepare multifunctional polyamide-6/graphene fibers, in which graphene sheets grafted with polyamide-6 (PA6) distribute uniformly. Flower-shaped graphene oxide (fGO), which was obtained by spray-drying of graphene oxide aqueous dispersion, was added into melted caprolactam under stirring. PA6/fGO chips were prepared by polymerization process. The whole reaction took place in a 3 L autoclave, using water as catalyst. The PA6/fGO chips were then melt spun into continuous fibers for characterization.
Results After a process of swelling, expansion and dissociation, fGO was tranformed into GO sheets in melted caprolactam, where strong interactions took place between caprolactam molecules and GO sheets via hydrogen bound (Fig.1, Fig.2). The homogeneous dispersion of GO sheets in melted caprolactam was obtained by dispersing fGO powder for 1.5 h. During the polymerization process, the surface of GO was grafted by PA6 molecules, which improved the interface compatibility between GO and PA6 (Fig.3). PA6/fGO was dispersed steadily in 64% formic acid, and such mechanism was further proved in AFM detection. The PA6/fGO copolymer was shown in the form of flakes with a height of 4-5 nm, higher than that GO (0.8 nm) and that of graphene (0.34 nm). The chips of PA6/fGO show excellent spinnability, and the composite fiber can be woven into fabircs (Fig.4). The polymerization process was not sufficient to fully reduce graphene oxide, while the addition of fGO led to the crystal transformation of PA6, conducive for obtaining higher strength (Fig.5). Low amount of fGO was able to improve the crystallinity of polymer and higher crystallization temperature, but the effect on the relative viscosity and thermal weight loss was not obvious (Fig.6, Fig.7 and Tab.1). The tensile strength of PA6 single fiber was increased by 25.4% and the tensile modulus 49.5% with the addition of 0.1% fGO, whereas increasing the fGO content by 0.6% resulted in decrease in the mechanical properties of the composite fiber (Fig.8). With outstanding functions in antibacterial performance, antiviral behavior, far infrared emission, negative ion generation, and UV protection, the PA6/fGO composite fabric shows broad application prospects (Tab.2).
Conclusion Flower-shaped graphene oxide and PA6 are compounded by in-situ unfolding polymerization. It was found that the flower-shaped graphene oxide microspheres gradually swell, expand and dissociate in melted caprolactam, and that the unfolded graphene oxide sheets are covalently grafted with PA6 molecules, forming a polymer brush structure, which improves the interface compatibility. The chain growth of PA6 will not be affected by low dosage addition of fGO, which would however induce transformation of PA6 crystal into a more stable form. The crystallinity of PA6 demonstrates a peak with the addition of fGO. The low dosage addition of graphene oxide has little effect on the relative viscosity and thermal weight loss of PA6, and the tensile strength and tensile modulus of the fiber increases by 25.4% and 49.5%, respectively. The composite fiber demonstrates multifunctionality in effective antibacterial performance, anti-virus behavior, far infrared emission, ultraviolet protection, and negative ion generation. The applications of PA6/fGO multifunctional fabric in different areas remain to be explored in the near future.

Key words: graphene, polyamide-6, composite fiber, multifunctional fiber, in-situ polymerization, anti-bacterial, high-speed spinning

中图分类号: 

  • TB332

图1

fGO在己内酰胺熔体中搅拌不同时间后的形貌"

图2

单个fGO颗粒在己内酰胺熔体中搅拌不同时间后的形貌"

图3

PA6/fGO(0.1)溶解在甲酸中的照片以及PA6/fGO共聚物的AFM表征图"

图4

PA6/fGO切片、纤维、织物及手套 a—切片;b—纤维;c—织物;d—手套(石墨烯添加量为0.1%)。"

图5

PA6/fGO切片、PA6/fGO共聚物的X射线衍射曲线和拉曼光谱"

表1

PA6/fGO复合材料和PA6的熔融焓、熔点、凝固点和结晶度"

样品名 熔融焓/(J.g-1) 熔点/℃ 凝固点/℃ 结晶度/%
PA6 63.94 221.1 182.8 26.5
PA6/fGO(0.1) 70.06 218.3 192.5 29.1
PA6/fGO(0.6) 59.27 218.6 193.4 24.7

图6

PA6/fGO(0.1)和PA6的DSC曲线"

图7

PA6/fGO的相对黏度和热失重曲线"

图8

PA6和PA6/fGO复合纤维的力学性能"

表2

PA6/fGO织物的功能性"

测试项目 参考标准 标准要求 测量值
PA6织物 PA6/fGO复合织物
紫外线防护系数UPF GB/T 18830—2009 >40 <30 >50
UVA透过率/% <5 >5 0.05
抑菌率/% 金黄色葡萄球菌 ≥70 <70 99
大肠杆菌 GB/T 20944.3—2008 ≥70 <70 93
白色念珠菌 ≥60 <60 98
H1N1病毒灭活率/% ISO 18184:2014(E) 优异>99.9 <50 99.99
负离子发生量/(个·cm-3) GB/T 30128—2013 中等发生量550~1 000 <550 866
远红外发射率 GB/T 30127—2013 ≥0.88 <0.86 0.93
远红外辐射温升/℃ GB/T 30127—2013 ≥1.4 <1.2 2.0
重金属含量/(mg·kg-1) BS EN 16711—2:2016 不同金属要求不同 未检出 全部未检出
[1] CHANG Dan, LIU Jingran, FANG Bo, et al. Reversible fusion and fission of graphene oxide-based fibers[J]. Science, 2021, 372:614-617.
doi: 10.1126/science.abb6640 pmid: 33958473
[2] HAN Zhanpo, WANG Jiaqing, LIU Senpin, et al. Electrospinning of neat graphene nanofibers[J]. Advanced Fiber Materials, 2021, 4(2):268-279.
doi: 10.1007/s42765-021-00105-8
[3] JIN J, RAFIQ R, GILL Y Q, et al. Preparation and characterization of high performance of graphene/nylon nanocomposites[J]. Eur Polym J, 2013, 49 (9): 2617-2626.
doi: 10.1016/j.eurpolymj.2013.06.004
[4] HOU W, TANG B, LU L, et al. Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material[J]. RCS Advances, 2014, 4(10): 4848-4855.
[5] ZHENG D, TANG G, ZHANG H B, et al. In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites[J]. Compos Sci Technol, 2012, 72(2): 284-289.
doi: 10.1016/j.compscitech.2011.11.014
[6] ZENG X, WANG G, LIU Y, et al. Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control[J]. Environ Sci-Nano, 2017, 4 (12): 2248-2266.
doi: 10.1039/C7EN00583K
[7] STANKOVICH S, DIKIN D A, DOMMETT G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442:282-286.
doi: 10.1038/nature04969
[8] RAGHU A V, LEE Y R, JEONG H M, et al. Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites[J]. Macromol Chem Phys, 2008, 209: 2487-2493.
doi: 10.1002/macp.200800395
[9] FAN P, WANG L, YANG J, et al. Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold[J]. Nanotechnology, 2012. DOI: 10.1088/0957-4484/23/36/365702.
doi: 10.1088/0957-4484/23/36/365702
[10] LACHMAN N, BARTHOLOME C, MIAUDET P, et al. Raman response of carbon nanotube/PVA fibers under strain[J]. J Phys Chem C, 2009, 113: 4751-4754.
doi: 10.1021/jp900355k
[11] DALTON A B, COLLINS S, MUNOZ E, et al. Super-tough carbon-nanotube fibres[J]. Nature, 2003, 423: 703-703.
doi: 10.1038/423703a
[12] SHIN M K, LEE B, KIM S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Commun, 2012, 3: 650.
doi: 10.1038/ncomms1661
[13] LIU H, HOU L, PENG W, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. J Mater Sci, 2012, 47: 8052-8060.
doi: 10.1007/s10853-012-6695-5
[14] ZHOU L, LIU H, ZHANG X. Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers[J]. J Mater Sci, 2015, 50: 2797-2805.
doi: 10.1007/s10853-015-8837-z
[15] CHATTERJEE S, NÜESCH F, CHU B. Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide-12 fibers[J]. Chem Phys Lett, 2012, 557: 92-96.
doi: 10.1016/j.cplett.2012.11.091
[16] KHAN U, YOUNG K, O'Neill A, et al. High strength composite fibres from polyester filled with nanotubes and graphene[J]. J Mater Chem, 2012, 22: 12907-12914.
doi: 10.1039/c2jm31946b
[17] MACK J J, VICULIS L M, ALI A, et al. Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers[J]. Adv Mater, 2005, 17: 77-80.
doi: 10.1002/adma.200400133
[18] 邹梨花, 杨莉, 兰春桃, 等. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
ZOU Lihua, YANG Li, LAN Chuntao, et al. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method[J]. Journal of Textile Research, 2021, 42(12): 111-118.
[19] REN G, ZHANG Z, ZHU X, et al. Influence of functional graphene as filler on the tribological behaviors of nomex fabric/phenolic composite[J]. Compos Part A: Appl Sci Manufac, 2013, 49: 157-164.
doi: 10.1016/j.compositesa.2013.03.001
[20] ZHANG S, DU Z, LI G. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction[J]. Anal Chem, 2011, 83: 7531-7541.
doi: 10.1021/ac201864f pmid: 21859155
[21] GONG L, YOUNG R J, KINLOCH I A, et al. Optimizing the reinforcement of polymer-based nanocomposites by graphene[J]. ACS Nano, 2012, 6: 2086-2095.
doi: 10.1021/nn203917d pmid: 22364317
[22] JIANG Z, LI Q, CHEN M, et al. Mechanical reinforcement fibers produced by gel-spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites[J]. Nanoscale, 2013, 5: 6265-6269.
doi: 10.1039/c3nr00288h pmid: 23736640
[23] XU Z, GAO C. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010, 43(16): 6716-6723.
doi: 10.1021/ma1009337
[24] CHEN C, XU Z, HAN Y, et al. Redissolution of flower-shaped graphene oxide powder with high density[J]. ACS Appl Mater Inter, 2016, 8(12): 8000-8007.
doi: 10.1021/acsami.6b00126
[25] CHEN C, XI J B, ZHOU E Z, et al. Porous graphene microflowers for high-performance microwave absorption[J]. Nano-Micro Lett, 2018. DOI:10.1007/s40820-017-0179-8.
doi: 10.1007/s40820-017-0179-8
[26] CHEN C, XI J B, HAN Y, et al. Ultralight graphene micro-popcorns for multifunctional composite applications[J]. Carbon, 2018, 139:545-555.
doi: 10.1016/j.carbon.2018.07.020
[27] 姜兆辉, 李永贵, 杨自涛, 等. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(3): 175-180.
JIANG Zhaohui, LI Yonggui, YANG Zitao, et al. Research progress in graphene/polymer composite fibers and textiles[J]. Journal of Textile Research, 2021, 42(3): 175-180.
doi: 10.1177/004051757204200309
[28] LIU H, HOU L, PENG W, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. J Mater Sci, 2012, 47(23): 8052-8060.
doi: 10.1007/s10853-012-6695-5
[29] 李亮, 刘静芳, 胡泽栋, 等. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(9): 102-107.
LI Liang, LIU Jingfang, HU Zedong, et al. Graphene oxide loading on polyester fabrics and antistatic properties[J]. Journal of Textile Research, 2020, 41(9): 102-107.
[30] 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42(10): 126-131.
[1] 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155.
[2] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[3] 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70.
[4] 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78.
[5] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[6] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[7] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[8] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[9] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[10] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[11] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[12] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[13] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[14] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[15] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!