纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 47-55.doi: 10.13475/j.fzxb.20220709209
CHEN Chen1, HAN Yi1, SUN Haiyan1, YAO Chengkai1, GAO Chao1,2()
摘要:
为实现复合纤维中石墨烯的分子级分散,从而改善现有石墨烯复合纤维制成率低、强度低、耐用性差等问题,提出了一种原位展开共聚的机制,使得聚酰胺6(PA6)分子接枝的石墨烯片能够均匀分散在体系内,从而批量制备多功能PA6/石墨烯纤维,建立起全新的纤维制备-加工-性能一体化系统,实现了多功能性和高力学性能的兼顾。结果表明:在聚合过程中,花状氧化石墨烯呈现出逐步展开、分散的形貌变化,同时参与聚合反应中;反应结束后,PA6分子均匀接枝在石墨烯片表面,并诱导PA6发生了晶型转变;加入0.1%石墨烯后复合纤维单丝的拉伸强度相比纯PA6纤维提高25.4%,拉伸模量提高49.5%;此外,石墨烯复合PA6面料兼具优异的抗菌、抗病毒、远红外发射、负离子发生、防紫外线等功能,具有广阔的市场前景。
中图分类号:
[1] |
CHANG Dan, LIU Jingran, FANG Bo, et al. Reversible fusion and fission of graphene oxide-based fibers[J]. Science, 2021, 372:614-617.
doi: 10.1126/science.abb6640 pmid: 33958473 |
[2] |
HAN Zhanpo, WANG Jiaqing, LIU Senpin, et al. Electrospinning of neat graphene nanofibers[J]. Advanced Fiber Materials, 2021, 4(2):268-279.
doi: 10.1007/s42765-021-00105-8 |
[3] |
JIN J, RAFIQ R, GILL Y Q, et al. Preparation and characterization of high performance of graphene/nylon nanocomposites[J]. Eur Polym J, 2013, 49 (9): 2617-2626.
doi: 10.1016/j.eurpolymj.2013.06.004 |
[4] | HOU W, TANG B, LU L, et al. Preparation and physico-mechanical properties of amine-functionalized graphene/polyamide 6 nanocomposite fiber as a high performance material[J]. RCS Advances, 2014, 4(10): 4848-4855. |
[5] |
ZHENG D, TANG G, ZHANG H B, et al. In situ thermal reduction of graphene oxide for high electrical conductivity and low percolation threshold in polyamide 6 nanocomposites[J]. Compos Sci Technol, 2012, 72(2): 284-289.
doi: 10.1016/j.compscitech.2011.11.014 |
[6] |
ZENG X, WANG G, LIU Y, et al. Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control[J]. Environ Sci-Nano, 2017, 4 (12): 2248-2266.
doi: 10.1039/C7EN00583K |
[7] |
STANKOVICH S, DIKIN D A, DOMMETT G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442:282-286.
doi: 10.1038/nature04969 |
[8] |
RAGHU A V, LEE Y R, JEONG H M, et al. Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites[J]. Macromol Chem Phys, 2008, 209: 2487-2493.
doi: 10.1002/macp.200800395 |
[9] |
FAN P, WANG L, YANG J, et al. Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold[J]. Nanotechnology, 2012. DOI: 10.1088/0957-4484/23/36/365702.
doi: 10.1088/0957-4484/23/36/365702 |
[10] |
LACHMAN N, BARTHOLOME C, MIAUDET P, et al. Raman response of carbon nanotube/PVA fibers under strain[J]. J Phys Chem C, 2009, 113: 4751-4754.
doi: 10.1021/jp900355k |
[11] |
DALTON A B, COLLINS S, MUNOZ E, et al. Super-tough carbon-nanotube fibres[J]. Nature, 2003, 423: 703-703.
doi: 10.1038/423703a |
[12] |
SHIN M K, LEE B, KIM S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Commun, 2012, 3: 650.
doi: 10.1038/ncomms1661 |
[13] |
LIU H, HOU L, PENG W, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. J Mater Sci, 2012, 47: 8052-8060.
doi: 10.1007/s10853-012-6695-5 |
[14] |
ZHOU L, LIU H, ZHANG X. Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers[J]. J Mater Sci, 2015, 50: 2797-2805.
doi: 10.1007/s10853-015-8837-z |
[15] |
CHATTERJEE S, NÜESCH F, CHU B. Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide-12 fibers[J]. Chem Phys Lett, 2012, 557: 92-96.
doi: 10.1016/j.cplett.2012.11.091 |
[16] |
KHAN U, YOUNG K, O'Neill A, et al. High strength composite fibres from polyester filled with nanotubes and graphene[J]. J Mater Chem, 2012, 22: 12907-12914.
doi: 10.1039/c2jm31946b |
[17] |
MACK J J, VICULIS L M, ALI A, et al. Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers[J]. Adv Mater, 2005, 17: 77-80.
doi: 10.1002/adma.200400133 |
[18] | 邹梨花, 杨莉, 兰春桃, 等. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118. |
ZOU Lihua, YANG Li, LAN Chuntao, et al. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method[J]. Journal of Textile Research, 2021, 42(12): 111-118. | |
[19] |
REN G, ZHANG Z, ZHU X, et al. Influence of functional graphene as filler on the tribological behaviors of nomex fabric/phenolic composite[J]. Compos Part A: Appl Sci Manufac, 2013, 49: 157-164.
doi: 10.1016/j.compositesa.2013.03.001 |
[20] |
ZHANG S, DU Z, LI G. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction[J]. Anal Chem, 2011, 83: 7531-7541.
doi: 10.1021/ac201864f pmid: 21859155 |
[21] |
GONG L, YOUNG R J, KINLOCH I A, et al. Optimizing the reinforcement of polymer-based nanocomposites by graphene[J]. ACS Nano, 2012, 6: 2086-2095.
doi: 10.1021/nn203917d pmid: 22364317 |
[22] |
JIANG Z, LI Q, CHEN M, et al. Mechanical reinforcement fibers produced by gel-spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites[J]. Nanoscale, 2013, 5: 6265-6269.
doi: 10.1039/c3nr00288h pmid: 23736640 |
[23] |
XU Z, GAO C. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010, 43(16): 6716-6723.
doi: 10.1021/ma1009337 |
[24] |
CHEN C, XU Z, HAN Y, et al. Redissolution of flower-shaped graphene oxide powder with high density[J]. ACS Appl Mater Inter, 2016, 8(12): 8000-8007.
doi: 10.1021/acsami.6b00126 |
[25] |
CHEN C, XI J B, ZHOU E Z, et al. Porous graphene microflowers for high-performance microwave absorption[J]. Nano-Micro Lett, 2018. DOI:10.1007/s40820-017-0179-8.
doi: 10.1007/s40820-017-0179-8 |
[26] |
CHEN C, XI J B, HAN Y, et al. Ultralight graphene micro-popcorns for multifunctional composite applications[J]. Carbon, 2018, 139:545-555.
doi: 10.1016/j.carbon.2018.07.020 |
[27] | 姜兆辉, 李永贵, 杨自涛, 等. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(3): 175-180. |
JIANG Zhaohui, LI Yonggui, YANG Zitao, et al. Research progress in graphene/polymer composite fibers and textiles[J]. Journal of Textile Research, 2021, 42(3): 175-180.
doi: 10.1177/004051757204200309 |
|
[28] |
LIU H, HOU L, PENG W, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. J Mater Sci, 2012, 47(23): 8052-8060.
doi: 10.1007/s10853-012-6695-5 |
[29] | 李亮, 刘静芳, 胡泽栋, 等. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(9): 102-107. |
LI Liang, LIU Jingfang, HU Zedong, et al. Graphene oxide loading on polyester fabrics and antistatic properties[J]. Journal of Textile Research, 2020, 41(9): 102-107. | |
[30] | 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42(10): 126-131. |
[1] | 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155. |
[2] | 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163. |
[3] | 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70. |
[4] | 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78. |
[5] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
[6] | 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117. |
[7] | 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212. |
[8] | 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8. |
[9] | 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211. |
[10] | 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166. |
[11] | 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75. |
[12] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[13] | 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106. |
[14] | 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112. |
[15] | 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39. |
|