纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 56-63.doi: 10.13475/j.fzxb.20220607808

• 特约专栏:纺织科技前沿 • 上一篇    下一篇

基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能

周文1, 俞建勇2, 张世超2, 丁彬2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2022-06-30 修回日期:2022-10-11 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 丁彬(1975—),男,研究员,博士。主要研究方向为超细纤维材料。E-mail:binding@dhu.edu.cn
  • 作者简介:周文(1992—),男,博士。主要研究方向为基于绿色溶剂的超细纤维材料。
  • 基金资助:
    国家重点研发计划项目(2021YFE0105100);国家自然科学基金项目(52103050);上海市自然科学基金项目(21ZR1402600)

Preparation of green-solvent-based polyamide nanofiber membrane and its air filtration performance

ZHOU Wen1, YU Jianyong2, ZHANG Shichao2, DING Bin2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2022-06-30 Revised:2022-10-11 Published:2023-01-15 Online:2023-02-16

摘要:

为避免在聚酰胺纳米纤维过滤材料制备和使用过程中甲酸等溶剂对人体和环境的潜在危害,采用乙醇(溶剂)和水(非溶剂)通过静电纺丝技术制备了绿色溶剂型聚酰胺纳米纤维膜,分析了纺丝液中乙醇与水的质量比对溶液性质和纤维成形的影响,研究了纳米纤维膜本体结构与空气过滤性能之间的关系。结果表明:在聚酰胺/乙醇溶液体系中加入适量的水能减小纤维直径,但过量的水又会使纤维直径增大,当溶剂中乙醇与水质量比为9:1时,聚酰胺纤维最细,平均直径为332 nm;该聚酰胺纳米纤维膜具有小孔径(0.7 μm左右)、高孔隙率(84%)的孔结构,对最易穿透粒径颗粒物PM0.3具有较好的过滤性能,过滤效率为99.02%,阻力压降为158 Pa,品质因子为0.029 3 Pa-1

关键词: 绿色溶剂, 静电纺丝, 聚酰胺, 纳米纤维膜, 空气过滤, 过滤材料

Abstract:

Objective The epidemic of COVID-19 and its variants is endangering human health. Wearing protective masks can effectively reduce the infection risk by resisting the inhalation of the polluted air containing the coronavirus. Electrospun polyamide nanofibers can be used as the core layer of protective masks and have lately received growing attention because of their high filtration performance and robust mechanical properties. However, existing electrospun polyamide nanofiber filters are usually prepared from toxic solvents which could cause severe environmental pollution and endanger workers' health, hence, their practical application should be restricted. Therefore, it is imperative to seek and develop green-solvent-based polyamide nanofiber filters.
Method Innovative polyamide nanofiber filters were developed by direct electrospinning technique based on green solvents (Fig.1). Ethanol as the solvent and water as the nonsolvent were adopted to prepare the green-solvent-based polyamide (GSPA) nanofibers by designing spinning solutions with different ethanol/water mass ratios (i.e., 10:0, 9:1, 8:2, 7:3, and 6:4). During electrospinning process, the working voltage, tip-to-collector distance, and solution extrusion speed were set as 30 kV, 15 cm and 1 mL/h, respectively. The nanofibers prepared with the different ethanol/water ratios were denoted as GSPA-0, GSPA-1, GSPA-2, GSPA-3, and GSPA-4, respectively.
Results It was found that water content had a great influence on the morphological structures of polyamide nanofibers (Fig.2). After introducing a small amount of water, the obtained GSPA-1 nanofibers featuring thinner diameter of 332 nm were compared to the GSPA-0 nanofibers (499 nm). The enhanced conductivity (10.5 μS/cm) of waterborne spinning solutions (Fig.3) stimulated more charges on spinning jets and led to larger electrostatic force, thus greatly elongating the jets and thinning the fiber diameter. However, with the further increment of water concentrations from 20% to 40%, the obtained fibers exhibited an increased average diameter ranging from 443 to 1 553 nm, which was mainly attributed to the larger viscosity of spinning solutions. Although water cannot dissolve polyamide, homogenous waterborne polyamide/ethanol solutions can still be obtained with different ethanol/water mass ratios within a broad area in the stable region (Fig.3). The average pore size of GSPA-1 membranes decreased by 55% compared with that of GSPA-0 membranes, contributing to high filtration efficiency. Moreover, with different concentrations (10%, 20%, 30%) of water, the fluffy structure of GSPA nanofibers were achieved with a high porosity (>80%), which would offer more passageways to transmit air rapidly. As the water concentration increased, the breaking strength of membranes increased at first and then decreased (Fig.5), and the GSPA-1 membranes exhibited the highest breaking strength of 5.6 MPa, which was believed to be related to the enhanced entanglements and contacts among the adjacent fibers because of the small fiber diameter. The GSPA-1 membranes displayed the highest filtration efficiency (99.02%) for the most penetration particles (PM0.3) by virtue of the small fiber diameter but suffered from poor permeability with a pressure drop of 158 Pa. Moreover, the GSPA-1 membranes possessed the highest quality factor of 0.029 3 Pa-1, suggesting the optimal filtration performance among different GSPA membranes. A high PM0.3 removal efficiency (>95%) was achieved for GSPA-1 filters under various airflow velocities ranging from 10 to 90 L/min (Fig.7). Compared with conventional melt-blown fibers, the GSPA nanofibers featured a smaller diameter and higher Knudsen number (Fig.8), and PM0.3 were captured mainly on the surfaces of green polyamide nanofibers (Fig.9), demonstrating the higher adsorption ability benefiting from the larger specific surface area.
Conclusion A cleaner production of polyamide nanofibers for air filtration was proposed by direct electrospinning based on green and sustainable binary solvents of water and ethanol. For the first time, the structure including fiber diameter, porosity, and pore size of electrospun polyamide nanofibers were precisely tailored by manipulating water concentration in spinning solutions. The prepared environmentally friendly polyamide nanofiber filters feature the interconnected porous structure with the nanoscale 1D building blocks (332 nm), mean pore size (0.7 μm), and porosity (84%), thus achieving efficient PM0.3 capture performance with the filtration efficiency of 99.02% and pressure drop of 158 Pa, which could be comparable to previous toxic-solvent-processed nanofibers. Moreover, the GSPA nanofibers exhibit robust mechanical properties with an impressive breaking strength (5.6 MPa) and elongation (163.9%), contributing to withstanding the external forces and deformation in the practical assembly and usage of resultant filters. It is envisaged that the green-solvent-based polyamide nanofibers could be used as promising candidates for next-generation air filters, and the proposed waterborne spinning strategy can provide valuable insights for cleaner production of advanced polyamide textiles.

Key words: green solvent, electrospinning, polyamide, nanofiber membrane, air filtration, filter material

中图分类号: 

  • TS102.6

图1

GSPA纳米纤维膜的制备示意图"

图2

由不同醇水质量比的纺丝液制备的GSPA纳米纤维膜的SEM照片和纤维平均直径"

图3

聚酰胺/乙醇/水体系的三元相图和含不同醇水质量比的聚酰胺纺丝溶液性质"

图4

由不同醇水质量比纺丝液制备的GSPA纳米纤维膜的孔结构"

图5

由不同醇水质量比纺丝液制备的GSPA纳米纤维膜的断裂强度和断裂伸长率"

图6

由不同醇水质量比纺丝液制备的GSPA纳米纤维膜的过滤效率、阻力压降和品质因子"

图7

不同风速下GSPA-1纳米纤维膜的过滤效率和阻力压降"

图8

GSPA纳米纤维的克努森数"

图9

过滤后GSPA-1纳米纤维膜的SEM照片"

[1] WHO coronavirus (COVID-19) dashboard[EB/OL]. [2022-06-28]. https://covid19.who.int/.
[2] CHU D K, AKL E A, DUSA S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis[J]. The Lancet, 2020, 395(10242): 1973-1987.
doi: 10.1016/S0140-6736(20)31142-9
[3] 张世超. 超细纳米蛛网材料的成型机理及高效空气过滤应用研究[D]. 上海: 东华大学, 2017:6-9.
ZHANG Shichao. Controllable fabrication of ultrafine two-dimensional nanonets and their application in high-efficiency air filtration[D]. Shanghai: Donghua University, 2017:6-9.
[4] 贾琳, 王西贤, 李环宇, 等. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
JIA Lin, WANG Xixian, LI Huanyu, et al. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane[J]. Journal of Textile Research, 2021, 42(12): 34-41.
[5] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015, 36(11): 6-11.
WANG Xiaoliang, FENG Xuewei, PAN Zhijuan. Preparation of PA6/PA66 nano-nets membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015, 36(11): 6-11.
[6] VITCHULI N, SHI Q, NOWAK J, et al. Electrospun ultrathin nylon fibers for protective applications[J]. Journal of Applied Polymer Science, 2010, 116(4): 2181-2187.
[7] ZHANG S, LIU H, YU J, et al. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration[J]. Journal of Materials Chemistry A, 2016, 4(16): 6149-6157.
doi: 10.1039/C6TA00977H
[8] LV D, ZHU M, JIANG Z, et al. Green electrospun nanofibers and their application in air filtration[J]. Macromolecular Materials and Engineering, 2018. DOI: 10.1002/mame.201800336.
doi: 10.1002/mame.201800336
[9] PRAT D, HAYLER J, WELLS A. A survey of solvent selection guides[J]. Green Chemistry, 2014, 16(10): 4546-4551.
doi: 10.1039/C4GC01149J
[10] HE P, WU F, YANG M, et al. Green and antimicrobial 5-bromosalicylic acid/polyvinyl butyral nanofibrous membranes enable interception-sterilization-integrated bioprotection[J]. Composites Communications, 2021. DOI: 10.1016/j.coco.2021.100720.
doi: 10.1016/j.coco.2021.100720
[11] 杨波, 肖通虎, 迟莉娜. 水-溶剂-PAN体系热力学和动力学对膜的影响[J]. 水处理技术, 2019, 45(12): 76-80.
YANG Bo, XIAO Tonghu, CHI Lina. Effect of thermodynamics and kinetics of water/solvent/PAN ternary systems on membrane[J]. Technology of Water Treatment, 2019, 45(12): 76-80.
[12] KALYANI S, SANGEETHA J, PHILIP J. Effect of precipitating agent and solvent polarity on the size and magnetic properties of magnetite nanoparticles prepared by microwave assisted synthesis[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9591-9602.
doi: 10.1166/jnn.2016.12353
[13] KADLA J F, KOREHEI R. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system[J]. Biomacromolecules, 2010, 11(4): 1074-1081.
doi: 10.1021/bm100034t pmid: 20235573
[14] 常怀云, 许淑燕, 应黎君, 等. 静电纺PAN纳米纤维多孔膜的微观结构与过滤性能[J]. 纺织学报, 2011, 32(9): 1-4.
CHANG Huaiyun, XU Shuyan, YING Lijun, et al. Microstructure and filtration properties of electrospun PAN nanofibrous porous membrane[J]. Journal of Textile Research, 2011, 32(9): 1-4.
doi: 10.1177/004051756203200101
[15] 柯勤飞, 靳向煜. 非织造学[M]. 2版. 上海: 东华大学出版社, 2010:16-18.
KE Qinfei, JIN Xiangyu. Nonwovens[M]. 2nd ed. Shanghai: Donghua University Press, 2010:16-18.
[16] XIAO Y, SAKIB N, YUE Z, et al. Study on the relationship between structure parameters and filtration performance of polypropylene meltblown nonwovens[J]. Autex Research Journal, 2020, 20(4): 366-371.
doi: 10.2478/aut-2019-0029
[17] 侯筱辰, 赵一璇, 林秀丽, 等. 风速及消杀手段对过滤材料效率影响的研究[J]. 工业安全与环保, 2021, 47(9): 93-98.
HOU Xiaochen, ZHAO Yixuan, LIN Xiuli, et al. Research on influence of face velocity and disinfection methods on filtration efficiency[J]. Industrial Safety and Environmental Protection, 2021, 47(9): 93-98.
[18] ZHAO X, WANG S, YIN X, et al. Slip-effect functional air filter for efficient purification of PM2.5[J]. Scientific Reports, 2016. DOI: 10.1038/srep35472.
doi: 10.1038/srep35472
[1] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[2] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[3] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[4] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[5] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[6] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[7] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
[8] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[9] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[10] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[11] 王莉娟, 宫玉梅, 李晓妍, 王迎, 郝新敏, 樊丽君. 生物基聚酰胺56分子质量及其Mark-Houwink方程参数的测定[J]. 纺织学报, 2022, 43(07): 36-40.
[12] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[13] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[14] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[15] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!