纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 79-86.doi: 10.13475/j.fzxb.20211007408

• 纤维材料 • 上一篇    下一篇

纤维素/碳纳米管复合纤维的制备及其功能化应用

蒲海红1, 贺芃鑫1, 宋柏青1, 赵丁莹1, 李欣峰1, 张天一1, 马建华1,2()   

  1. 1.西安工程大学 材料工程学院, 陕西 西安 710048
    2.绍兴市柯桥区西纺纺织产业创新研究院, 浙江 绍兴 312030
  • 收稿日期:2021-10-28 修回日期:2022-05-11 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 马建华 (1984—),男,副教授,博士。主要研究方向为智能/功能纤维材料制备及其应用。E-mail:majianhua@xpu.edu.cn
  • 作者简介:蒲海红(1994—),女,硕士生。主要研究方向为纤维素基功能纤维材料的制备及其在传感器件中的应用。
  • 基金资助:
    国家自然科学基金青年基金项目(51903198);陕西省教育厅科研计划项目(20JY025);陕西省重点研发计划项目(S2022-YF-YBNY-0187);陕西省创新能力支撑计划项目(2020TD-010);中国纺织工业联合会科技指导性计划项目(2021007);西安工程大学柯桥纺织产业创新研究院产学研协同创新项目(19KQZD13)

Preparation of cellulose/carbon nanotube composite fiber and its functional applications

PU Haihong1, HE Pengxin1, SONG Baiqing1, ZHAO Dingying1, LI Xinfeng1, ZHANG Tianyi1, MA Jianhua1,2()   

  1. 1. College of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shaoxing Keqiao West-Tex Textile Industry Innovative Institute, Shaoxing, Zhejiang 312030, China
  • Received:2021-10-28 Revised:2022-05-11 Published:2023-01-15 Online:2023-02-16

摘要:

针对导电材料填充纤维素复合纤维的强度与导电性能难以兼顾的问题,利用羧基改性碳纳米管能较好地分散在水中,以及低温 (-10 ℃) 条件下氢氧化钠/尿素溶液能较好地溶解纤维素这个特性,制备了纤维素/碳纳米管复合纺丝液,然后通过湿法纺丝制备了含有不同质量分数碳纳米管的复合纤维,对复合纤维的微观结构、力学性能以及电学性能进行表征。结果表明:由于纤维素与碳纳米管之间的强相互作用以及碳纳米管的取向,使复合纤维具有良好的力学性能和导电性能,当碳纳米管质量分数为20%时,复合纤维的断裂强度为165 MPa,电阻为3 kΩ;当电压升高到30 V时,复合纤维的温度在15 s内可上升到62.3 ℃,且吹气和浸入水中都能产生规律的电阻变化。

关键词: 纤维素, 碳纳米管, 湿法纺丝, 功能纤维, 复合纤维, 湿度传感, 智能纺织品

Abstract:

Objective Although cellulose fiber has advantages in high moisture absorption, good wearing comfort and low cost, its applications are limited due to its singular function and poor mechanical properties. The introduction of functional materials to give cellulose good electrical conductivity is significant to expand its applications. This research worked to disperse carboxyl-modified carbon nanotubes (CNT) evenly in the cellulose spinning dope so as to achieve high strength and good electrical conductivity of the modified cellulose fibers.
Method In the experiment, carboxyl-modified CNT was dispersed well in sodium hydroxide/urea solution, which can dissolve cellulose at a low temperature (-10 ℃). The composite fibers with different CNT contents (mass fractions of 5%, 10%, 15%, and 20%) were prepared by a laboratory wet spinning device. Meanwhile, the microstructure, mechanical properties and electrical properties of the composite fibers were characterized by scanning electron microscope, X-ray diffractometer,infrared spectrometer,mechanical property tests, and multimeter.
Results When the composite fibers were prepared by wet spinning, CNT maintained directional alignment because of the powerful shearing effect, which effectively improved the performance of the fiber. The surface of the cellulose fiber was smooth, while CNT was uniformly distributed along the radial direction of the composite fiber. It can be seen from the cross-sectional structure that the obtained fibers were dense when a large amount of CNT was encapsulated in the cellulose matrix to form a composite structure(Fig.4). In addition, the XRD and FT-IR spectra (Fig.5, Fig.6) indicated that hydrogen bonding interactions formed linkage between the CNT and cellulose molecular chains. The oriented structure of CNT and the hydrogen bonding interaction with the cellulose molecular chains benefited the composite fiber's mechanical properties. The stress-strain curves of the composite fibers with cellulose/CNT (C/CNT) show that the addition of CNT significantly improved the strength and stiffness of the composite fibers(Fig.7). The breaking strength was 165 MPa when the mass fraction of CNT was 20%, representing an improvement compared to the pure cellulose fiber. In addition, the composite fiber demonstrated electrical resistance of 100,3 kΩ when the mass fraction of CNT was 10%, 20%. Based on cellulose's moisture-absorbing and swelling properties, the composite fiber was further applied to the field of humidity sensing. The composite fiber exhibits excellent humidity sensitivity at room temperature, both air blowing and water immersion of the fiber resulted in detectable resistance changes (Fig.8). The electrothermal performance test revealed that the C/CNT composite fiber with a 20% CNT mass fraction exhibited excellent electrical heating performance. The temperature of the specimen rose to 62.3 ℃ within 15 s when the voltage was increased to 30 V (Fig.9).
Conclusion A homogeneous and stable spinning solution was prepared by virtue of the fact that carbon nanotubes can be well dissolved in sodium hydroxide/urea. The C/CNT composite fibers were prepared by wet spinning. Compared with the original cellulose fiber, the good dispersion and the enhanced interface provided the composite fiber with superior mechanical properties. Combined with the scalability of the wet spinning process and the versatility of flexible conductive fibers, the related work reported in this paper provides a reference for the development and design of lightweight and flexible sensing fabrics in wearable electronics.

Key words: cellulose, carbon nanotube, wet spinning, functional fiber, composite fiber, humidity sensing, smart textile

中图分类号: 

  • TQ342.83

图1

湿法纺丝流程示意图"

图2

纤维素溶解及与CNT相互作用示意图"

图3

纺丝液的黏度曲线"

表1

纺丝液黏度随转速变化"

转速/
(r·min-1)
黏度/(Pa·s)
纤维素 C/CNT-
5%
C/CNT-
10%
C/CNT-
15%
C/CNT-
20%
3 4 880 6 653 3 213 1 733 2 506
6 2 793 4 213 1 840 1 013 1 313
12 2 040 2 823 1 156 616 793
30 518 1 157 512 412 440
60 354 512 204 129 136

图4

不同CNT质量分数的复合纤维表面及断面扫描电镜照片"

图5

纤维素粉末、纤维素、CNT及C/CNT复合纤维的XRD曲线"

图6

纤维素及C/CNT复合纤维的红外光谱"

图7

纤维素及C/CNT复合纤维的应力-应变曲线"

图8

C/CNT复合纤维湿度传感性能"

图9

电热性能测试结果"

[1] SHANG Y Y, WANG C H, HE X D, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12: 401-409.
doi: 10.1016/j.nanoen.2014.11.048
[2] KIM J, KIM M, LEE M, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 2017, 8(1) 838-843.
doi: 10.1038/s41467-017-00960-3
[3] LEE Y H, KIM J S, NOH J, et al. Wearable textile battery rechargeable by solar energy[J]. Nano Letters, 2013, 13(11): 5753-5761.
doi: 10.1021/nl403860k
[4] ZHOU J, LI R, LIU S, et al. Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films[J]. Journal of Applied Polymer Science, 2009, 111(5): 2477-2485.
doi: 10.1002/app.29236
[5] MEHDI Y, HASSAN N, MOHAMMAD A. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides[J]. International Journal of Biological Macromolecules, 2015, 79: 269-277.
doi: 10.1016/j.ijbiomac.2015.05.002 pmid: 25964179
[6] HUANG H D, LIU C Y, ZUOU D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2015, 3(9): 4983-4991.
doi: 10.1039/C4TA05998K
[7] YANG J, ZHANG E W, LI X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98: 50-57.
doi: 10.1016/j.carbon.2015.10.082
[8] KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie-International Edition, 2005, 44(22): 3358-3393.
doi: 10.1002/anie.200460587 pmid: 15861454
[9] LI T, CHEN C J, BROZENA A H, et al. Developing fibrillated cellulose as a sustainable technological material[J]. Nature, 2021, 590 (7844): 47-56.
doi: 10.1038/s41586-020-03167-7
[10] HENNIGES U, SCHIEHSER S, ROSENAU T, et al. Cellulose solubility: dissolution and analysis of "problematic" cellulose pulps in the solvent system DMAC/LiCl[J]. ACS Symposium Series, 2010, 1033: 165-177.
[11] YASMIN J, ALEXANDER K, SUMAN S, et al. Theoretical and experimental study of dissolution mechanism of cellulose[J]. Journal of Molecular Liquids, 2020.DOI:10.1016/j.molliq.2020.113450.
doi: 10.1016/j.molliq.2020.113450
[12] WANG S, LU A, ZHANG L N. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53: 169-180.
doi: 10.1016/j.progpolymsci.2015.07.003
[13] 王琳琳, 魏立纲, 马英冲, 等. 1-丁基-3-甲基咪唑氯盐离子液体水溶液对纤维素的作用[J]. 化工学报, 2015, 66(S1): 32-37.
WANG Linlin, WEI Ligang, MA Yingchong, et al. The effect of 1-butyl-3-methylimidazole chloride salt ionic aqueous solution on cellulose[J]. Journal of Chemical Engineering, 2015, 66(S1): 32-37.
[14] KRUGLY E, PAULIUKAITYTE I, CIUZAS D, et al. Cellulose electrospinning from ionic liquids: the effects of ionic liquid removal on the fiber morphology[J]. Carbohydrate Polymers, 2022, 285: 119260-119270.
doi: 10.1016/j.carbpol.2022.119260
[15] 吕昂, 张俐娜. 纤维素溶剂研究进展[J]. 高分子学报, 2007(10): 937-944.
LÜ Ang, ZHANG Li'na. Advances in cellulose solvent research[J]. Acta Polymerica Sinica, 2007(10): 937-944.
[16] KIM J, KIM M, LEE M, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 2017, 8(1): 838-843.
doi: 10.1038/s41467-017-00960-3
[17] SHISHBOR M, POURANIAN M R. Tuning the mechanical and adhesion properties of carbon nanotubes using aligned cellulose wrap (cellulose nanotube): a molecular dynamics study[J]. Nanomaterials, 2020, 10(1): 154-162.
doi: 10.3390/nano10010154
[18] 孙义明, 孟庆浩, 彭少贤, 等. 金属填充聚合物功能材料研究进展[J]. 塑料科技, 2004(4): 31-34.
SUN Yiming, MENG Qinghao, PENG Shaoxian, et al. Advances in metal-filled polymer functional materials[J]. Plastics Science and Technology, 2004(4): 31-34.
[19] JANG J, ZHOU H, LEE J, et al. Heat scanning for the fabrication of conductive fibers[J]. Polymers, 2021, 13(9): 1405-1417.
doi: 10.3390/polym13091405
[20] 吕少一, 傅峰, 王思群, 等. 纳米纤维素基导电复合材料研究进展[J]. 林业科学, 2015, 51(10): 117-125.
LÜ Shaoyi, FU Feng, WANG Siqun, et al. Advances in nanocellulose-based conductive composites[J]. Scientia Silvae Sinicae, 2015, 51(10): 117-125.
[21] KIM S W, KWON S N, NA S I. Microstructure and chemical analysis data of polyurethane-silver nanoparticles/graphene nanoplates composite fibers[J]. Data in Brief, 2019. DOI:10.1016/j.dib.2019.104107.
doi: 10.1016/j.dib.2019.104107
[22] 胡圣飞, 张帆, 张荣, 等. 石墨烯表面改性及其在聚合物导电复合材料中的应用研究[J]. 高分子材料科学与工程, 2017, 33(8):184-190.
HU Shengfei, ZHANG Fan, ZHANG Rong, et al. Study on surface modification of graphene and its application in polymeric conductive composites[J]. Polymer Materials Science and Engineering, 2017, 33(8): 184-190.
[23] 金二锁, 杨芳, 朱阳阳, 等. 碱处理后纤维素纳米晶体的XRD、FT-IR和XPS分析[J]. 纤维素科学与技术, 2016, 24(3): 1-6.
JIN Ersuo, YANG Fang, ZHU Yangyang, et al. XRD, FT-IR and XPS analysis of cellulose nanocrystals after alkali treatment[J]. Cellulose Science and Technology, 2016, 24(3): 1-6.
[24] JIANG Z, CHEN D, YU Y, et al. Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/ dissolved in ammonium/dimethyl sulfoxide mixed solvent[J]. RSC Advances, 2017, 7(4): 2186-2192.
doi: 10.1039/C6RA25318K
[25] QI H, LIU J, GAO S, et al. Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline-urea solution[J]. Journal of Materials Chemistry A, 2013, 1(6): 2161-2168.
doi: 10.1039/C2TA00882C
[26] PETRA P, TIMO A, TOBIAS V, et al. Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes[J]. Composites Science and Technology, 2009, 70(2): 343-349.
doi: 10.1016/j.compscitech.2009.11.005
[27] ZHOU Z, SONG Q, HUANG B, et al. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance[J]. ACS Nano, 2021, 15(7): 183-194.
[1] 张晶, 黄治恒, 牛广亮, 梁生, 杨旅云, 魏磊, 周时凤, 侯冲, 陶光明. 热拉式多材料纤维光电子技术研究进展与展望[J]. 纺织学报, 2023, 44(01): 11-20.
[2] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[3] 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78.
[4] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[5] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[6] 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28.
[7] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[8] 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96.
[9] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[10] 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63.
[11] 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69.
[12] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[13] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[14] 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8.
[15] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!