纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 214-221.doi: 10.13475/j.fzxb.20220807408

• 染整与化学品 • 上一篇    下一篇

废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用

庞明科1,2,3, 王淑花1,3(), 史晟1,2,3, 薛立钟1,3, 郭红1,3, 高承永1,3, 卢建军1,3, 赵晓婉1,3, 王子涵1,3   

  1. 1.太原理工大学 轻纺工程学院, 山西 晋中 030600
    2.山西浙大新材料与化工研究院, 山西 太原 030024
    3.纺织行业废旧涤棉纺织品清洁再生重点实验室, 山西 晋中 030600
  • 收稿日期:2022-08-17 修回日期:2022-11-19 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 王淑花(1973—),女,副教授,博士。主要研究方向为废旧纺织品回收再利用。E-mail:1308870214@qq.com。
  • 作者简介:庞明科(1998—),男。主要研究方向为废旧涤纶纺织品的回收再利用。
  • 基金资助:
    国家自然科学基金项目(51903184);山西省自然科学基金项目(20210302124058);山西省自然科学基金项目(20210302124492);山西浙大新材料与化工研究院研发项目(2022SX-TD005)

Preparation and application of flame retardant waterborne polyurethane by alcoholysis of waste polyethylene terephthalate fiber

PANG Mingke1,2,3, WANG Shuhua1,3(), SHI Sheng1,2,3, XUE Lizhong1,3, GUO Hong1,3, GAO Chengyong1,3, LU Jianjun1,3, ZHAO Xiaowan1,3, WANG Zihan1,3   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030024, China
    3. Key Laboratory of Waste Polyester Cotton Textiles for Cleaning and Regeneration in Textile Industry, Jinzhong, Shanxi 030600, China
  • Received:2022-08-17 Revised:2022-11-19 Published:2023-02-15 Online:2023-03-07

摘要:

为解决废旧聚对苯二甲酸乙二醇酯(PET)纺织品日益增多,造成巨大的能源和资源浪费问题,采用醇解法对PET纤维进行解聚,优化其解聚工艺;并以醇解产物为原料合成磷硅协同阻燃改性水性聚氨酯,探究了异佛尔酮二异氰酸酯中NCO基团与对苯二甲酸双羟乙酯中OH基团的量比(n(NCO)/n(OH))、阻燃剂三羟甲基氧膦(THPO)和二氧化硅(SiO2)质量分数对阻燃改性水性聚氨酯形态和稳定性的影响;然后将得到的阻燃改性水性聚氨酯通过后整理的方法改性PET织物,并表征其阻燃性能。结果表明:在乙二醇(EG)为解聚剂,酯酸锌和氯化胆碱为催化剂的条件下,最佳解聚工艺为EG与PET质量比为 4∶1、 氯化胆碱与酯酸锌量比为1∶1、反应温度为185 ℃、 反应时间为4 h,解聚产物对苯二甲酸双羟乙酯的产率可达87.6%;当THPO质量分数小于24%,SiO2质量分数小于6%,n(NCO)/n(OH)在3~7时,阻燃改性水性聚氨酯呈均匀稳定的乳液形态;当THPO质量分数为24%,SiO2质量分数为4%,n(NCO)/n(OH)为6时,阻燃改性PET织物具有较高的阻燃性能,残炭率可达13.9%(比原PET织物的残炭率提高127%),极限氧指数最高达 29.7%,垂直燃烧测试达V-0级。

关键词: 废旧聚对苯二甲酸乙二醇酯, 醇解, 水性聚氨酯, 阻燃改性, 整理工艺, 回收再利用

Abstract:

Objective The increasing amount of waste polyethylene terephthalate (PET) textiles has resulted in a huge waste of energy and resources. Due to the limitation of recycling methods, the reuse of recycled products is also affected. In order to improve the yield of waste PET fabric and to reuse the recycled products, the aim of this research is to optimize the reaction conditions for depolymerization of waste PET fabric, to synthesize, using the depolymerized product as raw material, stable waterborne polyurethane (WPU), and to conduct flame retardant modification of the waterborne polyurethane for flame retardance.
Method Under the conditions of choline chloride and zinc acetate as catalysts, glycolysis was used to depolymerize waste PET fabric. The effects of reaction time, catalysts content and other influential factors were investigated on the product yields, and the products were characterized using Fourier transform infrared spectro-meter(FT-IR). Waterborne polyurethane was synthesized by the alcoholysis product ethylene terephtha-late(BHET) and isoflurone diisocyanate (IPDI) and so on, and tris(hydroxymethyl)phosphine (THPO) and SiO2 were used to improve its flame retardant property. The conditions were optimized for making stable waterborne polyurethane emulsion, and the effects of initial n(NCO)/n(OH), content of the flame retardants and SiO2 on the flame retardant property of WPU were systematically studied, and characterization was carried out using FT-IR and thermal gravity analysis. Flame retardant modified waterborne polyurethane on PET fabrics was studied with the assistance of scanning electron microscope (SEM).
Results The best depolymerization process took place when the mass ratio of EG and PET was set to be 4∶1, molar ratio of choline chloride to zinc acetate 1∶1, reaction temperature 185 ℃, and reaction time 4 h. The FT-IR results indicated that the depolymerized product was bis(hydroxyethyl) terephthalate (BHET), whose yield was up to 87.6%. When the THPO content was less than 24%, the SiO2 content less than 6%, and the n(NCO)/n(OH) was 3-7, the flame retardant modified waterborne polyurethane formed a uniform and stable emulsion. When the THPO content was 24%, SiO2 content was 4%, and n(NCO)/n(OH) was 6, the flame retardant modified PET fabric demonstrated promising flame retardant properties, with the residual carbon rate reaching up to 13.9%, which is 127% higher than original PET fabric, and the LOI value of the modified PET fabric reached up to 29.7%, which meets UL-94 V-0 level. The SEM results suggested that the PET fabric was uniformly coated by the flame retardant modified polyurethane emulsion after treatment, and the voids between the fabric and yarns were filled by the polyurethane, and the emulsion and the fabric were integrated together.
Conclusion This research has led to the following achievements: 1) waste PET fibers are depolymerized via alcoholysis; 2) the depolymerized product are successfully synthesized into flame retardant modified waterborne polyurethane; 3) the flame retardant modified waterborne polyurethane is used to treat PET fabrics which demonstrate promising flame retardant performance. The route can be applied to create general flame retardant fabrics.

Key words: waste polyethylene terephthalate, alcoholysis, waterborne polyurethane, flame retardant modification, finishing technology, recycling

中图分类号: 

  • TS102.9

表1

醇解实验条件对BHET产率的影响"

序号 n(醋酸锌)∶n(氯化胆碱) 时间/h BHET产率/%
1 2:1 2 63.2
2 2:1 3 82.8
3 2:1 4 85.4
4 1:1 2 78.8
5 1:1 3 82.4
6 1:1 4 87.6
7 1:2 2 71.4
8 1:2 3 77.8
9 1:2 4 83.3

图1

醇解产物红外光谱图"

表2

不同n(NCO)/n(OH)值对水性聚氨酯乳液的影响"

样品编号 n(NCO)/n(OH) 乳液状态 稳定性
IPDI-1 3 乳液 稳定
IPDI-2 4 乳液 稳定
IPDI-3 5 乳液 稳定
IPDI-4 6 乳液 稳定
IPDI-5 7 悬浊液 沉淀
IPDI-6 8 悬浊液 少量沉淀

表3

不同质量分数THPO对水性聚氨酯乳液的影响"

样品编号 THPO质量分数/% 乳液状态 稳定性
THPO-0 0 乳液 稳定
THPO-1 6 乳液 稳定
THPO-2 9 乳液 稳定
THPO-3 12 乳液 稳定
THPO-4 15 乳液 稳定
THPO-5 18 乳液 稳定
THPO-6 21 乳液 稳定
THPO-7 24 乳液 稳定

表4

不同质量分数SiO2对水性聚氨酯乳液的影响"

样品编号 SiO2质量分数/% 乳液状态 稳定性
SiO2-0 0 乳液 稳定
SiO2-1 2 乳液 稳定
SiO2-2 4 乳液 稳定
SiO2-3 6 乳液 稳定
SiO2-4 8 悬浊液 极少沉淀
SiO2-5 10 悬浊液 沉淀

表5

不同THPO质量分数改性PET的阻燃性能"

样品编号 LOI值/% UL-94测试结果
t1/s t2/s 是否引燃棉球 等级
THPO-1 23.1 3.4 2.9 V-1
THPO-2 24.3 2.8 2.5 V-1
THPO-3 25.0 2.8 2.4 V-1
THPO-4 26.0 2.4 1.8 V-1
THPO-5 27.2 2.3 1.9 V-0
THPO-6 28.6 1.9 0.8 V-0
THPO-7 29.7 2.0 0.7 V-0

表6

不同SiO2质量分数改性PET的阻燃性能"

样品
编号
LOI值/
%
UL-94测试结果
t1/s t2/s 是否引燃棉球 等级
SiO2-0 21.3 12.6 11.3 V-1
SiO2-1 24.2 7.0 5.8 V-0
SiO2-2 26.0 4.6 4.5 V-0
SiO2-3 28.5 2.2 1.8 V-0
SiO2-4 25.2 2.4 1.5 V-0
SiO2-5 24.0 1.8 1.1 V-0

表7

n(NCO)/n(OH)值对PET阻燃性能的影响"

样品
编号
LOI值/
%
UL-94测试结果
t1/s t2/s 是否引燃棉球 等级
IPDI-1 20.7 14.3 19.3 V-1
IPDI-2 23.9 13.5 11.3 V-1
IPDI-3 28.5 5.2 4.8 V-0
IPDI-4 29.7 4.9 4.6 V-0
IPDI-5 20.0 11.9 10.8 V-1
IPDI-6 18.6 13.1 12.7 V-2

图2

阻燃改性PET织物的TG及DTG曲线"

图3

阻燃改性PET织物的DSC升温曲线及降温曲线"

图4

阻燃改性PET织物的红外光谱图"

图5

阻燃改性PET织物的扫描电镜照片(×200)"

[1] RORRER N A, NICHOLSON S, CARPENTER A, et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling[J]. Joule, 2019, 3(4): 1006-1027.
doi: 10.1016/j.joule.2019.01.018
[2] NIKLES D E, FARAHAT M S. New motivation for the depolymerization products derived from poly (ethylene terephthalate)(PET) waste: a review[J]. Macromolecular Materials and Engineering, 2005, 290(1): 13-30.
doi: 10.1002/(ISSN)1439-2054
[3] DUTT K, SONI R K. A review on synthesis of value added products from polyethylene terephthalate (PET) waste[J]. Polymer Science Series B, 2013, 55(7): 430-452.
doi: 10.1134/S1560090413070075
[4] GEYER B, LORENZ G, KANDELBAUER A. Recycling of poly (ethylene terephthalate): a review focusing on chemical methods[J]. Express Polymer Letters, 2016, 10(7): 559-586.
doi: 10.3144/expresspolymlett.2016.53
[5] DISSANAYAKE L, JAYAKODY L. Engineering microbes to bio-upcycle polyethylene terephthalate[J]. Frontiers in Bioengineering and Biotechnology, 2021.DOI:10.3389/fbioe.2021.656465.
doi: 10.3389/fbioe.2021.656465
[6] SHETH J P, ANEJA A, WILKES G L, et al. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective[J]. Polymer, 2004, 45(20): 6919-6932.
doi: 10.1016/j.polymer.2004.06.057
[7] SHAN X, LIU L, WU Y, et al. Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable reestanding films and coatings for passive daytime radiative cooling[J]. Advanced Science, 2022.DOI: 10.1002/advs.202201190.
doi: 10.1002/advs.202201190
[8] CAI J, MURUGADOSS V, JIANG J, et al. Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications[J]. Advanced Composites and Hybrid Materials, 2022, 5(2):641-650.
doi: 10.1007/s42114-022-00473-8
[9] 李敏, 韩龙, 郭旭虹, 等. 有机硅改性水性聚氨酯涂层的制备及其防污性能[J]. 功能高分子学报, 2021, 34(4): 379-386.
LI Min, HAN Long, GUO Xuhong, et al. Preparation of silicone modified waterborne polyurethane coating and its antifouling performance[J]. Journal of Functional Polymers, 2021, 34(4): 379-386.
[10] 王少博. PET 聚酯的乙二醇解聚与再生共聚研究[D]. 上海: 东华大学, 2016:7-35.
WANG Shaobo. Study of glycol depolymerization and regenerative copolymerization of PET polymers[D]. Shanghai: Donghua University, 2016:7-35.
[11] 陈永军, 卿宁, 赵燕, 等. 纳米二氧化硅改性水性聚氨酯分散液的制备与表征[J]. 涂料工业, 2014, 44(1): 40-45.
CHEN Yongjun, QING Ning, ZHAO Yan, et al. Preparation and characterization of nano-silica modified aqueous polyurethane dispersions[J]. Coating Industry, 2014, 44(1): 40-45.
[12] WANG S, DU X S, JIANG Y X, et al. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant[J]. Colloid and Interface Science, 2019, 537: 197-205.
doi: 10.1016/j.jcis.2018.11.003
[13] 李国屏. 磷系阻燃剂及其阻燃涤纶的研制[J]. 上海化工, 1995, 20(5): 5-39.
LI Guoping. Development of phosphorus-based flame retardants and their flame retardant polyester[J]. Shanghai Chemical Industry, 1995, 20(5): 5-39.
[14] 张云波, 张珍竹, 罗耀发, 等. 气相二氧化硅改性水性聚氨酯涂层剂的制备及性能研究[J]. 纺织导报, 2013 (8): 66-68.
ZHANG Yunbo, ZHANG Zhenzhu, LUO Yaofa, et al. Preparation and property study of fumed silica-containing aqueous polyurethane coating agent[J]. China Textile Leader, 2013(8): 66-68.
[1] 廖云珍, 朱亚楠, 葛明桥, 孙同明, 张欣宇. 聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能[J]. 纺织学报, 2023, 44(02): 44-54.
[2] 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
[3] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[4] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
[5] 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112.
[6] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[7] 李艳艳, 李梦娟, 葛明桥. 有色废弃聚酯的脱色与再利用研究进展[J]. 纺织学报, 2021, 42(08): 17-23.
[8] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40.
[9] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[10] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[11] 曾玉晖, 张亭亭, 王克作, 何力, 陈益人. 天然彩棉后整理加工中颜色稳定性的影响因素[J]. 纺织学报, 2020, 41(08): 45-49.
[12] 陈欣, 张家琳, 王纪冬, 李晓强, 葛明桥. 电絮凝技术在废弃涤纶醇解液脱色中的应用[J]. 纺织学报, 2019, 40(10): 98-104.
[13] 任元林, 姜丽娜, 霍同国, 田甜. 聚丙烯腈纤维阻燃改性研究进展[J]. 纺织学报, 2019, 40(08): 181-188.
[14] 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89.
[15] 李艳艳, 李梦娟, 鲁静, 葛明桥. 废弃聚酯醇解液的回收与循环利用[J]. 纺织学报, 2019, 40(02): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[3] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[4] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[5] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[6] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[7] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[8] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[9] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .
[10] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58 -60 .