纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 168-175.doi: 10.13475/j.fzxb.20220904408

• 染整与化学品 • 上一篇    下一篇

全光谱SiO2结构色薄膜的加色法制备及其光学性能

李月佳, 高伟洪(), 杨树, 林田田, 朱婕, 赵小燕, 张之悦   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2022-09-19 修回日期:2022-11-20 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 高伟洪(1988—),男,副教授,博士。主要研究方向为光子晶体结构色纳米材料。E-mail: gaoweihong@sues.edu.cn。
  • 作者简介:李月佳(1996—),女,硕士生。主要研究方向为光子晶体结构色织物。
  • 基金资助:
    国家自然科学基金项目(51803117);上海市青年科技英才扬帆计划资助项目(21YF1415700);浙江省自然科学基金面上项目(E030059)

Preparation and optical properties of full spectrum SiO2 structure color films by additive color method

LI Yuejia, GAO Weihong(), YANG Shu, LIN Tiantian, ZHU Jie, ZHAO Xiaoyan, ZHANG Zhiyue   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2022-09-19 Revised:2022-11-20 Published:2023-02-15 Online:2023-03-07

摘要:

为解决在制备不同粒径的小球来实现全光谱结构色过程中工作量大的问题,采用溶剂调控法合成粒径均匀的304、260、200 nm的SiO2纳米颗粒,利用三原色加色法原理将3种不同粒径的纳米SiO2悬浮液按照不同质量比两两混合,然后放在烘箱中进行重力沉降自组装,制备出全光谱非晶光子晶体结构色薄膜,探究混合比例对SiO2光子晶体结构色的影响。同时为提高结构色的饱和度,将墨水添加到不同混合比例的SiO2悬浮液中,研究墨水质量分数对光子晶体结构色的影响。结果表明:随着小粒径SiO2比例的增加,结构色会出现蓝移现象;墨水质量分数越高,结构色亮度越低,色度呈先增加后减小趋势,当墨水质量分数为0.4%时,结构色饱和度最好。

关键词: 结构色薄膜, 加色法, 全光谱色, 光子晶体, SiO2纳米颗粒

Abstract:

Objective Structural colors have the advantages of brilliant colors and no pollution to the environment, and are of great interest in textile coloration. However, because one structural color corresponds to one particle size, the workload of using the method of preparing spheres with different particle sizes to achieve the full spectrum of structure colors is heavy, and the amorphous photonic crystals will be affected by non-correlated scattered light, resulting in poor saturation of structure color films, which is not suitable for the industrial development of structural colors. In this work, a simple method for preparing highly saturated, fully visible spectrum structural colors is proposed. The effective construction of highly saturated, full visible spectrum structural colors is achieved by mixing SiO2 of different particle sizes in different ratios to adjust the crystal plane distance and adding ink to increase the saturation of structure color films. This method improves the preparation efficiency of structural colors and further promotes the rapid preparation of full visible spectrum structural colors.
Method In this paper, SiO2 nanoparticles with uniform particle sizes of 304, 260 and 200 nm were synthesized by solvent modulation method. The three different particle sizes of SiO2 suspensions were mixed two by two according to different mass ratios by using the principle of three-primary additive color method, and the ink was added to the mixed ratio of SiO2 suspensions to absorb part of the incoherent scattered light and background light. Colloidal particles were self-assembled on glass sheets by gravity sedimentation method, and full spectrum amorphous photonic crystal structure color films were successfully prepared.
Results The wavelength of the reflection peak of the structure color film of the photonic crystal decreases uniformly with the increase of the proportion of smaller size SiO2. The blue shift phenomenon occurs in the structural color, which is due to the increase of the proportion of smaller size SiO2 making the lattice distance decrease uniformly. The wavelength of the photonic crystal also decreases following the Bragg's diffraction law. With the increase of ink content, the structural color lightness gradually decreases, and the chromaticity first increases and then decreases, and the structural color saturation is the best when the ink content is 0.4%. When the ink is added, the structural color appears reddish and yellowish. By measuring the CIE color space of the ink, it is found that the ink itself is reddish and yellowish, which explains the color redshift phenomenon of the SiO2/ink amorphous photonic crystal film.
Conclusion In this study, SiO2 nanoparticles with different particle sizes are prepared, and a full spectrum structural color film is prepared by the principle of additive color method and the saturation of photonic crystal structural color is improved by adding ink. The method is simple, efficient, and reduces cost of preparing full spectrum structural colors. It has great potential in the textile coloration and finishing industry, contributing to solving the problems of high pollution and high energy consumption in textile printing and coloration process, and promoting the industrialization of photonic crystal structural colors.

Key words: structure color film, additive color method, full spectrum color, photonic crystal, SiO2 nanoparticle

中图分类号: 

  • TS190.2

图1

不同粒径SiO2 纳米颗粒的SEM照片"

图2

不同粒径SiO2纳米颗粒自组装的结构色薄膜光学照片和相对应的反射率波谱图"

图3

不同混合比例的结构色薄膜的SEM照片及其相对应的2-D-FFT图"

图4

结构色薄膜的光学性能"

图5

反射率波谱中的反射峰波长与混合比例的关系以及xy色度坐标"

图6

添加不同质量分数墨水的SiO2结构色薄膜的光学照片与相应的反射率波谱图"

图7

添加不同质量分数墨水的结构色薄膜的光学性能"

图8

未添加墨水与添加墨水的SiO2结构色薄膜的光学照片"

图9

未添加墨水(绿色)与添加墨水(红色)SiO2 结构色薄膜的CIE 1931 xy色度坐标"

[1] 张之悦, 高伟洪, 朱婕, 等. 功能性结构色纳米纺织材料的研究进展[J]. 毛纺科技, 2022, 50(1):118-124.
ZHANG Zhiyue, GAO Weihong, ZHU Jie, et al. Research progress of functional structurally colored nano-textile materials[J]. Wool Textile Journal, 2022, 50(1): 118-124.
[2] 肖彬, 陈夫山, 孟尧. 结构色材料用于纺织印染领域的研究进展[J]. 高分子材料科学与工程, 2022, 38(1):182-190.
XIAO Bin, CHEN Fushan, MENG Yao. Research progress of structural color materials in textile printing and dyeing[J]. Polymer Materials Science & Engineering, 2022, 38(1):182-190.
[3] CHEN F X, HUANG Y, LI R, et al. Bio-inspired structural colors and their applications[J]. Chemical Communications, 2021, 57(99):13448-13464.
doi: 10.1039/D1CC04386B
[4] 田桓荣, 刘建勇. 结构生色纺织品的研究进展[J]. 针织工业, 2019(1):30-35.
TIAN Huanrong, LIU Jianyong. Research progress in structural chromogenic textiles[J]. Knitting Industries, 2019(1):30-35.
[5] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062.
pmid: 10034639
[6] JOHN S. Strong localization of photons in certain disordered dielectric super lattices[J]. Physical Review Letters, 1987, 58(23):2486-2489.
doi: 10.1103/PhysRevLett.58.2486
[7] 陈佳颖, 辛斌杰, 辛三法, 等. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(4):181-187.
CHEN Jiaying, XIN Binjie, XIN Sanfa, et al. Research progress in structurally colored fabrics using photonic crystals[J]. Journal of Textile Research, 2020, 41(4):181-187.
[8] 杜宏艳, 戚宇帆, 吴晨雪, 等. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
DU Hongyan, QI Yufan, WU Chenxue, et al. Preparation and optical properties of SiO2 photonic crystal structure color films[J]. Journal of Materials Engineering, 2019, 47(12):111-117.
[9] 朱小威, 韦天琛, 邢铁玲, 等. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(9):90-96.
ZHU Xiaowei, WEI Tianchen, XING Tieling, et al. Preparation and numerical simulation of colored fabric with amorphous photonic crystal structures[J]. Journal of Textile Research, 2021, 42(9):90-96.
[10] WEI W, DONG B, CAO L, et al. Fabrication of angle-independent anti-reflective structural color coating powders[J]. Materials Today Physics, 2021. DOI: 10.1016/j.mtphys.2021.100361.
doi: 10.1016/j.mtphys.2021.100361
[11] SU Xin, XIA Hongbo, ZHANG Shufen, et al. Vivid structural colors with low angle dependence from long-range ordered photonic crystal films[J]. Nanoscale, 2017, 9(9):3002-3009.
doi: 10.1039/c6nr07523a pmid: 27957573
[12] 王芬, 薛雨, 罗宏杰, 等. 低角度依赖非晶光子晶体结构色的研究进展[J]. 陶瓷学报, 2018, 39(5):519-528.
WANG Fen, XUE Yu, LUO Hongjie, et al. Research progress on structural colors of low angle-dependent amorphous photonic crystals[J]. Journal of Ceramics, 2018, 39(5):519-528.
[13] GAO Weihong, RIGOUT M, OWENS H. Optical properties of cotton and nylon fabrics coated with silica photonic crystals[J]. Optical Materials Express, 2017.DOI:10.1364/OME.7.000341.
doi: 10.1364/OME.7.000341
[14] TAKEOKA Y. Fusion materials for biomimetic structurally colored materials[J]. Polymer Journal, 2014, 47(2):106-113.
doi: 10.1038/pj.2014.125
[15] PAN Mengyao, LI Xiaobai, XIONG Chengjia, et al. Robust and flexible colloidal photonic crystal films with bending strain-independent structural colors for anticounterfeiting[J]. Particle & Particle Systems Characterization, 2020.DOI:10.1002/PPSC.201900495.
doi: 10.1002/PPSC.201900495
[16] LIN T T, CHEN J Y, GE R Q, et al. Structural colours controlled by mixing two sized silica nanoparticles[J]. Journal of Physics Conference Series, 2021. DOI:10.1088/1742-6596/1790/1/012004.
doi: 10.1088/1742-6596/1790/1/012004
[17] 林田田, 杨丹, 陈佳颖, 等. 不同粒径SiO2粒子混合制备光子晶体结构色薄膜[J]. 精细化工, 2021, 38(8): 1693-1698.
LIN Tiantian, YANG Dan, CHEN Jiaying, et al. Fabrication of photonic crystal structurally colored films by mixing different sized silica nanoparticles[J]. Fine Chemicals, 2021, 38(8):1693-1698.
[18] 林田田, 杨丹, 高伟洪, 等. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(2): 149-155.
LIN Tiantian, YANG Dan, GAO Weihong, et al. Low angle-dependent structurally coloured films over full visible spectrum[J]. Journal of Textile Research, 2022, 43(2):149-155.
[19] ZHANG Y F, DONG B Q, CHEN A, et al. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility[J]. Advanced Materials, 2015, 27(32):4719-4724.
doi: 10.1002/adma.v27.32
[20] DUMANLI A G, SAVIN T. Recent advances in the biomimicry of structural colours[J]. Chemical Society Reviews, 2016, 45(24):6698-6724.
pmid: 27510041
[21] KOHRI M. Progress in polydopamine-based melanin mimetic materials for structural color generation[J]. Science and Technology of Advanced Materials, 2020, 21(1): 833-848.
doi: 10.1080/14686996.2020.1852057
[22] CHEN G W, YI B, HUANG Y Y, et al. Development of bright and low angle dependence structural colors from order-disorder hierarchical photonic structure[J]. Dyes and Pigments, 2019, 161:464-469.
doi: 10.1016/j.dyepig.2018.09.039
[23] LEE C H, YU J L, WANG Y M, et al. Effect of graphene oxide inclusion on the optical reflection of a silica photonic crystal film[J]. RSC Advances, 2018, 8(30): 16593-16602.
doi: 10.1039/C8RA02235F
[24] XIAO M, LI Y W, ALLEN M C, et al. Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles[J]. ACS Nano, 2015, 9(5):5454-5460.
doi: 10.1021/acsnano.5b01298 pmid: 25938924
[25] CUI Y, WANG F, ZHU J F, et al. Preparation of large-scale and angle-independent structural colors by additive of black polypyrrole[J]. Journal of Colloid and Interface Science, 2018, 531(1):609-617.
doi: 10.1016/j.jcis.2018.07.094
[26] LI S, JIA L, DONG P, et al. Construction of photonic crystal structural colors on white polyester fabrics[J]. Optical Materials, 2021.DOI: 10.1016/j.optmat.2021.111115.
doi: 10.1016/j.optmat.2021.111115
[27] TOPCU G, GUNER T, DEMIR M M. Non-iridescent structural colors from uniform-sized SiO2 colloids[J]. Photonics and Nanostructures-Fundamentals and Applications, 2018, 29:22-29.
[1] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[2] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[3] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[4] 林田田, 杨丹, 高伟洪, 张之悦, 赵小燕. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(02): 149-155.
[5] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[6] 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20.
[7] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[8] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[9] 陈佳颖, 辛斌杰, 辛三法, 杜卫平, 许颖琦, 高伟洪. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04): 181-187.
[10] 张慧 刘晓艳. 光子晶体在织物表面的色泽呈现[J]. 纺织学报, 2017, 38(08): 91-95.
[11] 李义臣 刘国金 邵建中 周岚. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[3] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .