纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 103-110.doi: 10.13475/j.fzxb.20220801708

• 纺织工程 • 上一篇    下一篇

全成形毛衫花式结构三维仿真

赖安琪, 蒋高明(), 李炳贤   

  1. 江南大学 教育部针织技术工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-08-04 修回日期:2022-11-01 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 蒋高明(1962—),男,教授,博士。主要研究方向为新型针织工艺、智能针织装备与针织结构材料。E-mail: jgm@jiangnan.edu.cn。
  • 作者简介:赖安琪(1998—),女,硕士生。主要研究方向为数字化纺织技术。
  • 基金资助:
    泰山产业领军人才项目(tscy20180224);中央高校基本科研业务费专项资金资助项目(JUSRP122003)

Three-dimensional simulation of whole garment with fancy structures

LAI Anqi, JIANG Gaoming(), LI Bingxian   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-08-04 Revised:2022-11-01 Published:2023-02-15 Online:2023-03-07

摘要:

为实现对全成形毛衫编织工艺中花式结构的仿真与毛衫的虚拟展示,通过分析线圈结构特点建立线圈几何模型和网格模型,测量了实际织物中花式结构线圈的形变量,根据线圈网格质点与线圈型值点间数学关系式,利用矩阵运算得到花式结构线圈的坐标。使用三维图形引擎,根据线圈型值点三维空间坐标绘制出三维线圈结构,通过与实际织物比较对三维仿真效果进行检验。结果表明:该方法可实现从实际织物到三维线圈结构的快速转换,能准确清晰模拟全成形毛衫花式结构,增强全成形毛衫虚拟展示的真实感。

关键词: 全成形毛衫, 花式结构, 几何模型, 网格模型, 三维结构仿真, 服装虚拟展示

Abstract:

Objective Whole garment formation technology has been an attention hotspot in the sweater industry because of the integral manufacturing and wear comfort of the product. With the fast development of the computer-aided design technology, fashion computer aided drafting(CAD) software has made the design and manufacture of textiles easier and more accurate. In order to represent the whole garment more realistically, more quickly and more conveniently using knitwear CAD software, this research focuses on the three-dimensional simulation of whole garment with fancy structures.
Method Loop models were established based on the classical Pierce loop model for knitted fabrics. By drawing loop grids and comparing the offset of loop grid mass point between undeformed loops and transformed loops, the transformed loop value of physical fabrics with fancy structures for whole garment was represented. Coordinates of control points of loops were calculated by combining the offset value of transformed loops with theory of vectors transformation in the two-dimensional space. Three-dimensional simulation of fancy structure was achieved by using JavaScript programming language.
Results Characteristics of all fancy structures used for whole garment was analyzed. The geometric model and grid-based model of plain stitch loop were built separately as shown in Fig. 1 and 2, and those of closed tuck loop were built separately as illustrated in Fig. 3 and 4. The deformation process of loops is showed in Fig. 5. The deformation was represented by loop grids according to the methods explained in Fig.6. The loop grid was transformed firstly, leading to the transformed of loops. In order to create the three-dimensional effect of the fabric, loop grids shown in Fig. 7 were drawn based on loop height and width, and the offset value of grid mass points was measured by comparing with the position of grid mass points of undeformed loop grid. Then, the average proportion of grid mass points was calculated and listed in Tab. 1. The control point coordinates of every transformed loop listed in Tab. 2 were calculated by the relation between offset proportion and control points as illustrated in Fig. 9. The transformation matrix was obtained, and related formulas of the calculation were established. The simulation tool was created by using Visual Studio Code software, as well as three-dimensional graphics engine library based on WebGL. The loop path was created by calling function CatmullRomCurve3 in the graphics engine library, which uses Catmull-Rom interpolation algorithm for path generation. The loops were created by calling function TubeBufferGeometry. Finally, three-dimensional simulation of whole garment with fancy structures with features such as fabric narrowing, fabric widening and partial knitting was completed, and it was illustrated in Fig. 10.
Conclusion Three-dimensional simulation of multiple types of fancy structures and whole garments could be completed by the methods introduced in this paper. The models of fancy structures are realistic with clear structures, with the correct relationship between loops. The simulated fancy structures could be applied in three-dimensional virtual display of whole garment. In the future, three-dimensional simulation of other forms of whole garment could be achieved using the methods.

Key words: whole garment, fancy structure, geometric model, grid-based model, three-dimensional structural simulation, garment virtual display

中图分类号: 

  • TS186.3

图1

成圈线圈几何模型"

图2

成圈线圈网格模型"

图3

闭口悬弧几何模型"

图4

闭口悬弧网格模型"

图5

线圈变形过程"

图6

未变形线圈网格的绘制方法"

图7

暗加针工艺变形线圈网格绘制"

图8

变形线圈网格质点偏移量"

表1

A1,1号线圈网格质点偏移量测量值及偏移比例"

样本号 线圈网格质点偏移量/mm
O x P 1,1 O y P 1,1 O x P 1,2 O y P 1,2 O x P 2,1 O y P 2,1 O x P 2,2 O y P 2,2
B1 0.028 0.189 -0.005 0.132 -0.002 0.162 -0.409 1.387
B2 0.003 0.000 -0.012 0.000 0.000 0.000 -0.059 0.244
B3 0.015 0.004 0.009 0.021 0.014 0.032 0.263 -0.111
B4 -0.006 0.042 -0.002 0.025 0.000 0.025 0.217 0.620
B5 0.006 0.021 0.002 -0.034 0.011 0.084 -0.291 0.767
平均值/mm 0.009 0.051 -0.002 0.029 0.005 0.061 -0.056 0.581
偏移比例 0.006 0.043 -0.001 0.024 0.003 0.051 -0.035 0.488

图9

线圈型值点的变形"

表2

暗加针工艺线圈型值点坐标"

线圈
编号
P1 P2 P3 P4 P5 P6 P7 P8
A1,1 (-0.028,0.264) (0.609,0.770) (0.232,1.881) (0.436,2.254) (1.202,2.291) (1.394,1.933) (0.981,0.792) (1.602,0.328)
A1,2 (0.002,0.328) (0.572,0.713) (0.184,1.969) (0.383,2.361) (1.186,2.416) (1.381,2.003) (0.982,0.773) (1.546,0.088)
A2,1 (0.029,0.347) (0.623,0.786) (0.228,1.942) (0.428,2.296) (1.222,2.384) (1.421,2.035) (1.024,0.895) (1.618,0.462)
A2,2 (0.018,0.459) (0.638,0.998) (0.223,2.090) (0.425,2.493) (1.236,2.650) (1.443,2.306) (1.040,1.091) (1.666,0.638)
A3,1 (0.010,0.362) (0.602,0.921) (0.185,1.988) (0.379,2.369) (1.179,2.437) (1.383,2.098) (1.000,0.947) (1.606,0.552)
A3,2 (0.006,0.552) (0.616,1.165) (1.167,2.143) (0.345,2.526) (1.097,2.659) (1.313,2.357) (0.978,1.223) (1.638,0.927)
A4,1 (0.004,0.383) (0.585,0.968) (0.130,1.994) (0.299,2.367) (1.045,2.429) (1.260,2.106) (0.947,0.986) (1.590,0.647)
A4,2 (-0.010,0.647) (0.520,1.261) (0.017,2.136) (0.157,2.489) (0.869,2.599) (1.098,2.332) (0.866,1.293) (1.514,1.084)
A0 (-0.086,1.084) (0.090,1.499) (-0.145,2.347) (-0.018,2.630) (0.633,2.627) (0.748,2.354) (0.473,1.489) (0.633,1.168)
A5,1 (-0.077,0.517) (0.530,1.064) (0.223,2.173) (0.431,2.545) (1.162,2.547) (1.328,2.192) (0.891,1.055) (1.442,0.638)
A5,2 (-0.165,0.477) (0.400,1.157) (0.091,2.205) (0.288,2.572) (1.017,2.637) (1.180,2.303) (0.767,1.189) (1.279,0.778)
A5,3 (-0.321,0.778) (0.146,1.237) (-0.049,2.319) (0.158,2.669) (0.880,2.668) (0.999,2.317) (0.531,1.236) (0.881,0.766)
A6,1 (0.000,0.175) (0.450,0.832) (0.350,1.862) (0.500,2.245) (1.300,2.245) (1.550,1.862) (0.900,0.682) (1.450,0.175)
A6,2 (-0.150,0.175) (0.400,0.682) (0.550,1.862) (0.700,2.245) (1.500,2.245) (1.750,1.862) (0.850,0.682) (1.400,0.175)

图10

仿真效果图"

[1] 薛静, 卢习林. 基于质点-弹簧模型的三维服装模拟[J]. 北京服装学院学报(自然科学版), 2005(3):11-14.
XUE Jing, LU Xilin. 3-D clothing simulation based on mass-spring model[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2005(3): 11-14.
[2] 王敏, 丛洪莲, 蒋高明, 等. 四针床电脑横机的全成形工艺[J]. 纺织学报, 2017, 38(4):61-67.
WANG Min, CONG Honglian, JIANG Gaoming, et al. Whole garment knitting process on four-bed computerized flat knitting machine[J]. Journal of Textile Research, 2017, 38(4): 61-67.
[3] LEAF J, WU R D, SCHWEICKART E, et al. Interactive design of periodic yarn-level cloth patterns[J]. ACM Transactions on Graphics, 2019, 37(6):1-15.
[4] YUKSEL C, KALDOR J, JAMES D, et al. Stitch meshes for modeling knitted clothing with yarn-level detail[J]. ACM Transactions on Graphics, 2012, 31(4):37-37.
[5] 赵磊. 纬编针织物线圈的三维模拟及变形实现[D]. 武汉: 武汉纺织大学, 2011:4.
ZHAO Lei. Three-dimensional simulation and deformation realization of weft loop[D]. Wuhan: Wuhan Textile University, 2011:4.
[6] 刘瑶. 羊毛衫组织的变形分析与仿真实现[D]. 武汉: 武汉纺织大学, 2013:4.
LIU Yao. The deformation analysis and the simulation realization of woolen sweater[D]. Wuhan: Wuhan Textile University, 2013:4.
[7] 沙莎. 基于弹簧-质点模型的纬编针织物三维模拟研究[D]. 无锡: 江南大学, 2017:8-9,46.
SHA Sha. Three-dimensional simulation of weft knitted fabric based on mass-spring model[D]. Wuxi: Jiangnan University, 2017:8-9,46.
[8] 沙莎, 蒋高明, 张爱军, 等. 纬编针织物线圈建模与变形三维模拟[J]. 纺织学报, 2017, 38(2):177-183.
SHA Sha, JIANG Gaoming, ZHANG Aijun, et al. Three-dimensional modeling and deformation for weft knitted fabric loops[J]. Journal of Textile Research, 2017, 38(2): 177-183.
[9] 雷惠. 横编织物结构特征研究与外观真实感模拟[D]. 无锡: 江南大学, 2014:4-5.
LEI Hui. The research of the structure and the realistic simulation of flat knitted fabric[D]. Wuxi: Jiangnan University, 2014:4-5.
[10] 彭佳佳. 基于线圈结构的全成形毛衫三维仿真[D]. 无锡: 江南大学, 2020:60.
PENG Jiajia. 3D simulation for complete knitwear based on loop structure[D]. Wuxi: Jiangnan University, 2020:60.
[11] PIERCE F. Geometrical principles applicable to the design of functional fabrics[J]. Textile Research Journal, 1947, 17: 123-147.
doi: 10.1177/004051754701700301
[12] 郑培晓, 蒋高明. 基于WebGL的纬编提花织物三维仿真[J]. 纺织学报, 2021, 42(5):59-65.
ZHENG Peixiao, JIANG Gaoming. Three-dimensional simulation of weft-knitted jacquard fabric based on WebGL[J]. Journal of Textile Research, 2021, 42(5): 59-65.
[1] 马莹, 刘岳岩, 赵洋, 陈翔, 禄盛, 胡瀚杰. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(04): 47-54.
[2] 郑培晓, 蒋高明. 基于WebGL的纬编提花织物三维仿真[J]. 纺织学报, 2021, 42(05): 59-65.
[3] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[4] 刘海桑, 蒋高明, 董智佳. 基于Web的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[5] 潘博, 钟跃崎. 基于二维图像的三维服装重建[J]. 纺织学报, 2020, 41(04): 123-128.
[6] 王盼, 吴志明. 全成形毛衫横向编织方式及其成形工艺[J]. 纺织学报, 2019, 40(10): 73-78.
[7] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[8] 李珂, 吴志明. 基于收针工艺的全成形毛衫分割线设计原理[J]. 纺织学报, 2019, 40(06): 85-90.
[9] 王盼, 吴志明. 全成形毛衫局部编织原理及其应用[J]. 纺织学报, 2019, 40(05): 41-46.
[10] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[11] 路丽莎, 蒋高明, 罗璇. 全成形毛衫腋下拼角编织工艺及性能[J]. 纺织学报, 2019, 40(02): 69-75.
[12] 刘倩楠 刘新金. 采用ABAQUS的粘胶机织物拉伸力学性能仿真[J]. 纺织学报, 2018, 39(09): 39-43.
[13] 汝欣 彭来湖 吕明来 史伟民 胡旭东. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018, 39(09): 44-49.
[14] 邱庄岩 花芬 吴志明. 四针床全成形编织工艺及其应用[J]. 纺织学报, 2018, 39(08): 63-70.
[15] 罗璇 彭佳佳 蒋高明 丛洪莲. 全成形毛衫样板设计及成形方法[J]. 纺织学报, 2018, 39(07): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[5] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[6] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[7] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[8] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[9] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[10] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .