纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 27-33.doi: 10.13475/j.fzxb.20220803807
周歆如1, 胡铖烨2, 范梦晶1, 洪剑寒1,3(), 韩潇1,3
ZHOU Xinru1, HU Chengye2, FAN Mengjing1, HONG Jianhan1,3(), HAN Xiao1,3
摘要:
为研究电场变化对皮芯结构纳米纤维包芯纱结构的影响,通过双针头连续水浴静电纺丝法制备了以涤纶长丝为芯纱,锦纶纳米纤维为包覆层,兼具纳米纤维特性和传统纱线力学性能的纳米纤维包芯纱。通过有限元分析软件ANSYS模拟其电场分布,探究了2个针头针尖间距对电场分布及纳米纤维包芯纱结构的影响。结果表明:静电纺丝最大电场强度出现在针尖处,随着针尖间距的增大,电场强度峰值呈现先增大后减小再增大的趋势;当针尖间距为20 mm时,纳米纤维间的黏结较多;随着针尖间距的增大,纳米纤维的形貌更加均匀光滑,其直径呈减小趋势,在针尖间距为80 mm时达到最小值(74.43±10.79) nm;当针尖间距从20 mm增加到60 mm时,纳米纤维包芯纱的孔隙率从20.27%提高到44.08%。
中图分类号:
[1] |
程翠林, 马佳沛, 王玮琛, 等. 天然产物静电纺纳米纤维在生物医药方面的应用[J]. 应用化学, 2021, 38(6): 605-614.
doi: 10.19894/j.issn.1000-0518.200269 |
CHENG Cuilin, MA Jiapei, WANG Weichen, et al. Application of natural product electrostatic spinning nanofibers in biomedicine[J]. Applied Chemistry, 2021, 38(6): 605-614. | |
[2] | 解健, 苏俭生. 静电纺丝取向纳米纤维作为组织工程生物支架的优势与特征[J]. 中国组织工程研究, 2021, 25(16): 2575-2581. |
XIE Jian, SU Jiansheng. Advantages and characteristics of electrospinning oriented nanofibers as tissue engineering biological scaffolds[J]. Chinese Tissue Engineering Research, 2021, 25(16): 2575-2581. | |
[3] |
LUZIO A, CANESI E V, BERTARELLI C, et al. Electrospun polymer fibers for electronic applica-tions[J]. Materials, 2014, 7(2): 906-947.
doi: 10.3390/ma7020906 |
[4] | 周筱雅, 马定海, 胡铖烨, 等. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(2): 113-119. |
ZHOU Xiaoya, MA Dinghai, HU Chengye, et al. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarn[J]. Journal of Textile Research, 2022, 43(2): 113-119. | |
[5] | 佑晓露. 基于纳米纤维包芯纱的压力传感器的制备及性能表征[J]. 上海纺织科技, 2018, 46(11): 24-27. |
YOU Xiaolu. Preparation and characterization of pressure sensors based on nanofiber core-spun yarns[J]. Shanghai Textile Science & Technology, 2018, 46(11): 24-27. | |
[6] |
CAI J Y, XIAN X R, LI D D, et al. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering[J]. Biomaterials Science, 2020, 8(16): 4413-4425.
doi: 10.1039/d0bm00816h pmid: 32648862 |
[7] |
BAZBOUZ M B, STYLIOS G K. Novel mechanism for spinning continuous twisted composite nanofiber yarns[J]. European Polymer Journal, 2008, 44(1): 1-12.
doi: 10.1016/j.eurpolymj.2007.10.006 |
[8] | FARZAD D, HOSSEINI R S A, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732. |
[9] |
ZHOU F L, GONG R H, PORAT I. Nano-coated hybrid yarns using electrospinning[J]. Surface & Coatings Technology, 2010, 204(21): 3459-3463.
doi: 10.1016/j.surfcoat.2010.04.021 |
[10] | 刘呈坤, 贺海军, 孙润军, 等. 纺丝工艺对静电纺纳米纤维包芯纱包覆性能的影响[J]. 高分子材料科学与工程, 2016, 32(12): 82-86. |
LIU Chengkun, HE Haijun, SUN Runjun, et al. Effect of spinning process on coating properties of electrospinning nanofiber core-spun yarns[J]. Polymer Materials Science & Engineering, 2016, 32(12): 82-86. | |
[11] | 周明阳. 共轭电纺设备与工艺的研究[D]. 南京: 东南大学, 2008: 44-47. |
ZHOU Mingyang. Study on conjugated electrospinning equipment and technology[D]. Nanjing: Southeast University, 2008: 44-47. | |
[12] |
HE J X, ZHOU Y M, WU Y C, et al. Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method[J]. Surface and Coatings Technology, 2014, 258: 398-404.
doi: 10.1016/j.surfcoat.2014.08.062 |
[13] |
HE J X, ZHOU Y M, WANG L D, et al. Fabrication of continuous nanofiber core-spun yarn by a novel electrospinning method[J]. Fibers and Polymers, 2014, 15(10): 2061-2065.
doi: 10.1007/s12221-014-2061-3 |
[14] |
HE J X, QI K, WANG L D, et al. Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn[J]. Fibers and Polymers, 2015, 16(6): 1319-1326.
doi: 10.1007/s12221-015-1319-8 |
[15] | 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702. |
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic and hydrophobic micro-nano fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5): 694-702. | |
[16] | 胡铖烨, 周歆如, 范梦晶, 等. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(9): 95-100. |
HU Chengye, ZHOU Xinru, FAN Mengjing, et al. Preparation and properties of skin-core micro/nano fiber composite yarn[J]. Journal of Textile Research, 2022, 43(9): 95-100. | |
[17] | 刘呈坤, 来侃, 孙润军, 等. 多针头静电纺丝工艺过程探讨[J]. 纺织学报, 2012, 33(8): 7-10. |
LIU Chengkun, LAI Kan, SUN Runjun, et al. Discussion on multi-needle electrostatic spinning pro-cess[J]. Journal of Textile Research, 2012, 33(8): 7-10. | |
[18] | 吴元强, 许宁, 陆振乾, 等. 多针头静电纺丝电场强度分布模拟研究[J]. 合成纤维工业, 2019, 42(5): 41-45. |
WU Yuanqiang, XU Ning, LU Zhenqian, et al. Simulation of electric field intensity distribution in multi-needle electrospinning[J]. China Synthetic Fiber Industry, 2019, 42(5): 41-45. | |
[19] | 陈威亚, 刘延波, 王洋知, 等. 多针头静电纺丝过程中电场强度与分布的有限元分析[J]. 纺织学报, 2014, 35(6): 1-6. |
CHEN Weiya, LIU Yanbo, WANG Yangzhi, et al. Finite element analysis of electric field intensity and distribution in multi-needle electrospinning[J]. Journal of Textile Research, 2014, 35(6): 1-6.
doi: 10.1177/004051756503500101 |
|
[20] | 张蒙. 多针头静电纺丝的数值模拟研究[D]. 上海: 东华大学, 2015: 26-28. |
ZHANG Meng. Numerical simulation of multi-needle electrospinning[D]. Shanghai: Donghua University, 2015: 26-28. | |
[21] | 王丹, 单小红, 潘江贵. Photoshop和MatLab软件在纳米纤维膜孔隙率测试中的应用[J]. 产业用纺织品, 2016, 34(6): 41-44. |
WANG Dan, SHAN Xiaohong, PAN Jianggui. Application of Photoshop and MatLab in porosity measurement of nanofiber membrane[J]. Technical Textiles, 2016, 34(6): 41-44. |
[1] | 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167. |
[2] | 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142. |
[3] | 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134. |
[4] | 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183. |
[5] | 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111. |
[6] | 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148. |
[7] | 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63. |
[8] | 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108. |
[9] | 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117. |
[10] | 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124. |
[11] | 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21. |
[12] | 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15. |
[13] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[14] | 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15. |
[15] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
|