纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 191-198.doi: 10.13475/j.fzxb.20220806608

• 染整与化学品 • 上一篇    下一篇

Fe/C多孔碳材料制备及其涂层棉织物的吸波性能

丁娟1(), 刘阳1, 张晓飞2, 郝克倩1, 宗蒙3, 孔雀4   

  1. 1.中原工学院 纺织学院, 河南 郑州 451191
    2.杭州电子科技大学 材料与环境工程学院, 浙江 杭州 310012
    3.西北工业大学 化学化工学院, 陕西 西安 710072
    4.江苏工程职业技术学院 纺织服装学院, 江苏 南通 226007
  • 收稿日期:2022-08-16 修回日期:2022-11-17 出版日期:2023-02-15 发布日期:2023-03-07
  • 作者简介:丁娟(1984—),女,讲师,博士。主要研究方向为纺织品吸波整理剂研发及纺织品功能整理技术。E-mail: dingjuan218485@126.com
  • 基金资助:
    河南省重点研发与推广专项指导性项目(202102210584);中国纺织工业联合会科技指导性项目(2021009);浙江省新型传感材料重点实验室开放基金课题资助项目(ZJKLNMS2021001);中原工学院青年骨干教师资助项目(教高[2019] 350);中原工学院青年骨干教师资助项目0(中工[2018] 60)

Preparation of Fe/C porous carbon material and microwave absorption properties of coated cotton fabrics

DING Juan1(), LIU Yang1, ZHANG Xiaofei2, HAO Keqian1, ZONG Meng3, KONG Que4   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310012, China
    3. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
    4. College of Textile and Garment, Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, China
  • Received:2022-08-16 Revised:2022-11-17 Published:2023-02-15 Online:2023-03-07

摘要:

为提高涂层棉织物的吸波性能,采用溶液混合法制备磁性金属有机框架(Fe-MOF),通过高温热解制备Fe/C多孔碳材料,以聚丙烯酸酯为黏合剂,将Fe/C多孔碳材料复合在棉织物上制备柔性纺织复合材料。借助 X射线衍射仪、场发射扫描电子显微镜、振动样品磁力计与热重分析仪分别对Fe/C多孔碳材料的结构、微观形貌、磁性能进行表征与测试,使用矢量网络分析仪对Fe/C多孔碳材料和涂层棉织物的吸波性能进行分析。结果表明:在频率为4.6 GHz时,Fe/C多孔碳材料的反射损耗值最小为-60.4 dB,小于-10 dB的有效带宽为1.4 GHz,最佳厚度为4.3 mm;涂层棉织物的反射损耗值最小为-53.94 dB,小于-10 dB的有效频宽为X波段(频率为8.2~12.4 GHz), 最佳涂层厚度为4.5 mm;Fe/C多孔碳材料涂层棉织物厚度达到3.5 mm以上时,其吸波性能优良。

关键词: 铁基金属有机框架, Fe/C多孔碳材料, 柔性纺织复合材料, 涂层棉织物, 吸波性能

Abstract:

Objective With the rapid development of modern society and the increase of electronic equipment, the problem of electromagnetic pollution are causing increasing attention. In order to reduce the influence of electromagnetic radiation on people's health, textiles can be functionalized to shield the electromagnetic absorption waves. In view of the above ideas, electromagnetic wave absorption materials can be mixed in the polymer solution in the fiber production, and can be coated onto the textiles as functional finishing.
Method To improve the electromagnetic wave absorption performance of coated cotton fabrics, an iron based magnetic metal-organic framework (Fe-MOF) material was prepared following the solution mixing method. Fe/C porous carbon material was prepared by a high temperature pyrolysis. Polyacrylate was used as a binder to the Fe/C porous carbon material on cotton fabrics to prepare a flexible textile composite.The phase structure, microstructure and surface elements, magnetic properties and thermodynamic properties of Fe-MOF material and Fe/C porous carbon material were characterized and evaluated by X-ray diffractometer, field emission scanning electron microscope, vibrating sample magnetometer and thermogravimetric analyzer, respectively. The Fe-MOF material and Fe/C porous carbon material have been successfully separately prepared. The electromagnetic microwave absorption properties of the Fe/C porous carbon material and coated cotton fabrics are analyzed with a vector network analyzer, respectively.
Results At frequency 4.6 GHz, the Fe/C porous carbon material has a minimum reflection loss of -60.4 dB, an effective bandwidth less than -10 dB of 1.4 GHz with thickness of 4.3 mm (Fig. 6). Synergistic effect of dielectric loss and magnetic loss enhances the electromagnetic microwave absorption properties of the Fe/C porous carbon material (Fig. 7). The Debye relaxation process and magnetic loss exist in the Fe/C porous carbon material according to the Debye theory and eddy current loss (Fig. 8), respectively. The reflection loss and impedance matching coefficient reflect the impedance matching performance of the Fe/C porous carbon material with different thickness. When the thickness is 4.3 mm, the matching coefficient is close to 1 (Fig. 9), indicating excellent impedance matching property of the Fe/C porous carbon material. Most incident waves enter the Fe/C porous carbon material, and the synergistic effect of dielectric loss and magnetic loss inside the material is optimum. The minimum reflection loss of the coated cotton fabric is -53.94 dB, the effective bandwidth less than -10 dB is the X-band, and the optimal coating thickness is 4.5 mm (Fig. 10). The thickness of the Fe/C porous carbon material-coated cotton fabric reaches more than 3.5 mm, and the coated cotton fabric has excellent electromagnetic microwave absorption properties (Fig. 10).
Conclusion The research reported in this paper not only provides a basis for the research of the microwave absorption properties of the MOF derivatives, but also provides a basis for the study of the microwave absorption properties of flexible textiles. However, there are still many aspects to be studied in the future, such as the synthesis of biomass-based carbon materials, other preparation methods of the MOF derivatives and different fabrics coated finishing. The research on the application of microwave absorption materials to textiles needs further exploration. For example, the effective absorption bandwidth less than -10 dB is 1.4 GHz, which needs further improvement. To enhance the optimal thickness corresponding to the optimal absorption intensity, the effective absorption bandwidth may be reduced by doping, changing ligands and other methods. Meanwhile, the intersection of material science and textile chemistry will be the key factor for the breakthrough of electromagnetic microwave absorption materials in the textile field.

Key words: iron based magnetic metal-organic framework, Fe/C porous carbon material, flexible textile composite, coated cotton fabric, microwave absorption property

中图分类号: 

  • TS195.5

图1

Fe/C多孔碳材料及涂层棉织物的制备流程图"

图2

Fe-MOF材料和Fe/C多孔碳材料的XRD谱图"

图3

Fe-MOF材料的场发射扫描电镜照片"

表1

Fe-MOF材料中元素C、O和Fe的占比"

元素 质量分数 原子分数
C 50.29±0.22 63.19±0.28
O 34.74±0.40 32.77±0.38
Fe 14.97±0.38 4.04±0.10
合计 100.00 100.00

图4

Fe/C多孔碳材料的场发射扫描电镜照片"

表2

Fe/C多孔碳材料中各元素的占比"

元素 质量分数 原子分数
C 47.40±0.26 71.45±0.39
O 15.45±0.28 17.48±0.32
Fe 32.90±0.57 10.67±0.19
Pt 4.26±0.25 0.40±0.02
合计 100.00 100.00

图5

Fe/C多孔碳材料的磁滞回线图"

表3

Fe/C多孔碳材料的磁性能参数"

材料
名称
Ms/
(A· (m·g)-1)
M c /
(A·m-1)
M r s /
(A· (m·g)-1)
参考
文献
Fe/C 3 916 19 120 884 本文
Fe3O4 4 211 40 007 2 396 [18]

图6

Fe/C多孔碳材料的反射损耗图"

图7

Fe/C多孔碳材料的复介电常数、复磁导率及介电损耗、磁损耗因子"

图8

Fe/C多孔碳材料的ε'-ε″曲线和C0曲线图"

图9

不同厚度的Fe/C多孔碳材料的RL与Mz值"

图10

涂层棉织物的反射损耗图"

图11

Fe-MOF材料的热重曲线"

[1] WANG Lei, DU Zhen, BAI Xiaoyu, et al. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption[J]. Journal of Colloid and Interface Science, 2021, 591: 76-84.
doi: 10.1016/j.jcis.2021.01.090 pmid: 33592527
[2] XU Renxin, XU Dewen, ZENG Zhe, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chemical Engineering Journal, 2022, 427: 130796-130806.
doi: 10.1016/j.cej.2021.130796
[3] CHENG Ligang, WANG Qingwei, DING Juan. Synthesis of Co/CoO@RGO composite for enhanced electromagnetic microwave absorption performance[J]. Applied Physics A: Materials Science & Processing, 2021, 127: 23-35.
[4] TAN Ruiyang, ZHOU Fangkun, CHEN Ping, et al. PANI/FeCo@C composite microspheres with broadband microwave absorption performance[J]. Composites Science and Technology, 2022, 218: 109143-109155.
doi: 10.1016/j.compscitech.2021.109143
[5] 杲爽, 蔡菲, 倪庆清, 等. 柔性吸波纺织复合材料的制备及其性能[J]. 现代纺织技术, 2022, 30(2): 68-74.
GAO Shuang, CAI Fei, NI Qingqing, et al. Preparation and properties of flexible microwave absorbing composite textile[J]. Advanced Textile Technology, 2022, 30(2): 68-74.
[6] 黄威, 魏世丞, 梁义, 等. 核壳结构复合吸波材料研究进展[J]. 北京科技大学学报, 2019, 41(5): 547-556.
HUANG Wei, WEI Shicheng, LIANG Yi, et al. Research progress of core-shell composite absorbing materials[J]. Journal of Beijing University of Science and Technology, 2019, 41(5): 547-556.
[7] DING Juan, CHENG Ligang. Core-shell Fe3O4@SiO2@PANI composite: preparation, characterization, and applications in microwave absorption[J]. Journal of Alloys and Compounds, 2021, 881: 160574-160585.
doi: 10.1016/j.jallcom.2021.160574
[8] YANG Ziqi, GUO Huiqiao, YOU Wenbin, et al. Compressible and flexible PPy@MoS2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediated sandwich structure[J]. Nanoscale, 2021, 13: 5115-5124.
doi: 10.1039/d0nr08794g pmid: 33650603
[9] WANG Lei, WEN Bo, YANG Haibo, et al. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135:105958 - 105968.
doi: 10.1016/j.compositesa.2020.105958
[10] 姜苗苗, 丁颖, 徐丽慧, 等. 纳米银片/改性rGO的制备及在棉织物上的微波吸收性能[J]. 材料科学与工艺, 2021, 29 (6): 89-96.
JIANG Miaomiao, DING Ying, XU Lihui, et al. Preparation of nano-silver flakes/rGO and its electromagnetic shielding effectiveness on fabrics[J]. Materials Science and Technology, 2021, 29 (6): 89-96.
[11] 王东伟, 房宽峻, 刘秀明, 等. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(4): 90-97.
WANG Dongwei, FANG Kuanjun, LIU Xiuming, et al. Preparation of amino-modified reactive red 195/polymer nanospheres and its application on dyeing of cotton fabrics[J]. Journal of Textile Research, 2022, 43(4): 90-97.
[12] 王东伟, 房宽峻, 刘秀明, 等. 彩色聚合物微球的制备及其在纺织品印染中应用的研究进展[J]. 纺织学报, 2019, 40 (3): 8-16.
WANG Dongwei, FANG Kuanjun, LIU Xiuming, et al. Preparation of colored polymer microspheres and research progress thereof in textile dyeing and printing[J]. Journal of Textile Research, 2019, 40(3): 8-16.
doi: 10.1177/004051757004000102
[13] SHU Ruiwen, LI Weijie, WU Yue, et al. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band[J]. Chemical Engineering Journal, 2019, 362: 513-524.
doi: 10.1016/j.cej.2019.01.090
[14] WANG Xiao, PAN Fei, XIANG Zhen, et al. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance[J]. Carbon, 2020, 157: 130-139.
doi: 10.1016/j.carbon.2019.10.030
[15] YI Pengshu, YAO Zhengjun, ZHOU Jintang, et al. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers[J]. Nanoscale, 2021, 13: 3119-3136.
doi: 10.1039/d0nr07991j pmid: 33523065
[16] WANG Qinzhi, ZHAO Yijian, SHI Zhan, et al. Magnetic amino-functionalized-MOF (M = Fe, Ti, Zr)@COFs with superior biocompatibility: performance and mechanism on adsorption of azo dyes in soft drinks[J]. Chemical Engineering Journal, 2021, 420: 129955-129965.
doi: 10.1016/j.cej.2021.129955
[17] WANG Qinzhi, LI Rui, ZHAO Yijian, et al. Surface morphology-controllable magnetic covalent organic frameworks: a novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol[J]. Talanta, 2020, 219: 121255-121268.
doi: 10.1016/j.talanta.2020.121255
[18] DING Juan, CHENG Ligang, ZHUANG Xin. Three dimensional hierarchical structured Fe3O4/rGO/ZnO composite for effective electromagnetic wave absorp-tion[J]. Applied Physics A: Materials Science & Processing, 2021, 127: 470-485.
[19] WANG Shanshan, XU Yingchun, FU Ruru, et al. Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption[J]. Nano-Micro Letters, 2019, 11(4): 1-16.
doi: 10.1007/s40820-018-0235-z
[20] WANG Lei, WEN Bo, BAI Xiaoyu, et al. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption[J]. ACS Applied Nano Materials, 2019, 2(12): 7827-7838.
doi: 10.1021/acsanm.9b01842
[1] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[2] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[3] 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102.
[4] 丁志荣 张琰卿 温娇 郝瑞莉 高阳. 绒面吸波织物的制备及其吸波性能[J]. 纺织学报, 2015, 36(10): 44-48.
[5] 温娇 丁志荣 张琰卿 邹亚玲 郝瑞莉. 吸波涂层复合面料的制备及其吸波性能[J]. 纺织学报, 2014, 35(5): 61-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 刘从九. 我国纺织品绿色国际竞争力[J]. 纺织学报, 2004, 25(02): 116 -118 .
[7] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .