纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 199-206.doi: 10.13475/j.fzxb.20220807508

• 染整与化学品 • 上一篇    下一篇

天然染料染色羊毛的色域拓展及颜色预测模型

蒋阳1, 崔彪1, 山传雷2, 刘殷2, 张艳红3, 许长海1()   

  1. 1.青岛大学, 山东 青岛 266071
    2.青岛邦特生态纺织科技有限公司, 山东 青岛 266000
    3.魏桥纺织股份有限公司, 山东 滨州 256200
  • 收稿日期:2022-08-17 修回日期:2022-11-18 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 许长海(1975—),男,教授,博士。主要研究方向为生态纺织化学及颜色化学和科学。E-mail: changhai_xu@qdu.edu.cn。
  • 作者简介:蒋阳(1991—),男,讲师,博士。主要研究方向为生态染整技术。
  • 基金资助:
    山东省重点研发计划资助项目(2021CXGC011004);青岛市博士后应用研究项目(202114)

Color gamut expansion and color prediction of natural dye-dyed wool fibers

JIANG Yang1, CUI Biao1, SHAN Chuanlei2, LIU Yin2, ZHANG Yanhong3, XU Changhai1()   

  1. 1. Qingdao University, Qingdao, Shandong 266071, China
    2. Qingdao Bangte Ecological Textile Technology Co., Ltd., Qingdao, Shandong 266000, China
    3. Weiqiao Textile Co., Ltd., Binzhou, Shandong 256200, China
  • Received:2022-08-17 Revised:2022-11-18 Published:2023-02-15 Online:2023-03-07

摘要:

天然染料色谱不全的缺陷限制了其在羊毛上的应用。为丰富天然染料染色羊毛纤维的颜色色谱,选用天然红、黄、蓝三原色染料染色羊毛织物与纤维,然后对羊毛织物的一浴法拼混染色和有色纤维的拼色进行研究,并基于Kubelka-Munk单常数理论和Stearns-Noechel模型分别对一浴法拼混染色织物和拼混有色纤维进行颜色预测。结果表明:使用一浴法拼混染色,染色后的羊毛织物在CIELAB色域空间中分布不均匀,倾向于红(+a*),色相角(h) 分布范围主要集中在0°~24°、324°~360°之间;经有色纤维拼混获得的颜色空间分布更加均匀,更倾向于黄(+b*),色相角(h)分布范围集中在0°~50°、316°~360°区域;Kubelka-Munk模型和Stearns-Noechel模型可分别用于天然染料一浴法染色羊毛织物和羊毛有色纤维拼色的颜色预测,为进一步提高生产效率、降低配色成本提出新思路。

关键词: 天然染料, 羊毛纤维, 拼色, Kubelka-Munk单常数理论, Stearns-Noechel模型, 色域空间

Abstract:

Objective The exceptional benefits of wool fibers in terms of warmth retention, air and moisture permeability, and distinctive garment appearance make the wool fibers appealing. The value of finished wool clothing can be increased by using natural dyes to color the wool fibers. Natural dyes' limited color gamut, however, prevents them from being widely used due to issues in printing and dyeing wool fibers.
Method In order to enrich the color gamut of wool fibers dyed with natural dyes, natural red, yellow and blue, the three primary dyes, were chosen to dye wool fabrics and fibers with the one bath dyeing based on the use of fiber color matching method. The color prediction of fabric dyed with mixed dyes and mixed colored fibers was made based on Kubelka-Munk single constant theoretical model and Stearns-Noechel model, respectively.
Results The pH values have an effect on the depth of shade(K/S) for wool fibers colored with natural dyes(as shown in Tab. 1). The K/S value of the sample colored with natural red and blue dyes was increased from 3.89 to 17.82 and from 2.07 to 10.73 respectively as the pH value reduced from 4 to 2, while the sample dyed with natural yellow dye was decreased from 3.62 to 1.51 as the pH value decreased from 4 to 2. When the dye solution comprises natural red dyes, the hue angle h value of the fabric dyed using the one bath dyeing method ranged in 0°-24° and 324°-360°. The brightness value L* of the mixed color fiber system was higher than that of fabric dyed using the one bath dyeing method, the color saturation value (C*) decreased, and the hue angle range increased when the ratio of each dye used in the one bath dyeing method was equal to the ratio of the fiber dosage in the mixed colored fiber system. This may be because each fiber is dyed separately before being mixed, reducing dye competition and expanding the color gamut of woolen clothing dyed with natural dyes. The K/S curve of fabrics dyed using the one bath dyeing method matches the fitting curve by the Kubelka-Munk single constant theoretical model (Fig. 3), demonstrating a linear relationship between the K/S value of wool fabric dyed with mixed natural dyes and the K/S value of dyed with the single red, yellow, and blue natural dyes. Additionally, the reflectance curve of the mixed colored fiber was fitted using the Stearns-Noechel model. Reflectance change of the mixed colored fibers in the 400-700 nm wavelength range was almost in line with the reflectance curve determined using the Stearns-Noechel model(as seen in Fig. 4).
Conclusion The CIELAB color gamut space showed non-uniform distribution of the color coordinate of wool fabric dyed using the one bath dyeing method. Natural red dyes have a greater affinity for fibers than yellow, and blue natural dyes. Across comparison to wool fabric colored using the one bath dyeing method, the color coordinate of mixed colored fiber was spread more evenly in the color gamut space. The hue angle value of mixed colored fiber ranged in 0°-50° and 316°-360°. Using the one bath dyeing method and mixed colored fiber treated with natural dyes respectively, the Kubelka-Munk model and the Stearns-Noechel model could be used to predict the color of wool fabrics. This study also suggests novel approaches for further enhancing production efficiency and lowering color matching costs.

Key words: natural dye, wool fiber, color matching, Kubelka-Munk single constant theoretical model, Stearns-Noechel model, color gamut space

中图分类号: 

  • TS192.5

表1

pH值对天然染料染色羊毛织物K/S值的影响"

染料种类 pH值 K/S
天然红 2 17.82
3 12.65
4 3.89
天然黄 2 1.51
3 3.55
4 3.62
天然蓝 2 10.73
3 4.56
4 2.07

表2

一浴法染料拼色染色羊毛织物的颜色参数"

样品编号 染料用量/%(o.m.f) 颜色参数值
天然红 天然黄 天然蓝 L* a* b* C* h /(°)
F1 5 0 0 30.53 34.15 5.50 34.59 9.15
F2 4 1 0 31.34 34.41 6.79 35.08 11.15
F3 4 0 1 31.51 33.80 4.29 34.07 7.24
F4 3 2 0 32.85 34.01 7.20 34.77 11.96
F5 3 1 1 28.12 23.94 0.17 23.94 0.41
F6 3 0 2 27.13 19.86 -2.54 20.02 352.70
F7 2 3 0 35.23 32.95 8.41 34.01 14.32
F8 2 2 1 31.21 21.39 0.99 21.41 2.65
F9 2 1 2 28.78 17.67 -2.29 17.82 352.60
F10 2 0 3 28.12 14.94 -5.58 15.94 339.53
F11 1 4 0 45.24 28.14 13.26 31.10 25.23
F12 1 3 1 37.24 16.99 3.59 17.37 11.94
F13 1 2 2 36.10 12.42 -0.41 12.43 358.10
F14 1 1 3 34.20 10.26 -3.32 10.78 342.08
F15 1 0 4 32.59 9.11 -6.59 11.24 324.12
F16 0 5 0 79.10 3.98 54.41 54.56 85.82
F17 0 4 1 50.05 -9.65 10.75 14.45 131.91
F18 0 3 2 45.74 -9.02 3.26 9.59 160.14
F19 0 2 3 42.38 -7.92 -1.99 8.16 194.10
F20 0 1 4 41.18 -7.05 -5.50 8.94 217.98
F21 0 0 5 41.11 -6.34 -8.59 10.68 233.56

图1

一浴法染料拼色染色羊毛织物在CIELAB色域空间中的分布"

表3

有色纤维拼色样品的颜色参数"

样品编号 质量分数% 颜色参数值
天然红 天然黄 天然蓝 L* a* b* C* h /(°)
S1 100 0 0 34.44 34.32 4.45 34.61 7.38
S2 80 20 0 41.20 31.97 6.55 32.63 11.59
S3 80 0 20 37.04 28.96 1.53 29.00 3.02
S4 60 40 0 46.15 28.67 10.11 30.40 19.43
S5 60 20 20 42.26 26.12 3.90 26.41 8.48
S6 60 0 20 41.79 23.51 -1.18 23.54 357.12
S7 40 60 0 51.04 24.76 12.60 27.78 26.98
S8 40 40 20 51.00 18.31 6.02 19.27 18.20
S9 40 20 40 45.43 16.02 1.86 16.13 6.63
S10 40 0 60 45.54 14.59 -3.00 14.90 348.37
S11 20 80 0 60.91 18.88 22.21 29.15 49.64
S12 20 60 20 58.79 10.60 11.74 15.82 47.92
S13 20 40 40 54.60 7.85 6.10 9.94 37.85
S14 20 20 60 50.34 8.00 -1.87 8.22 346.85
S15 20 0 80 52.06 5.28 -4.96 7.24 316.78
S16 0 100 0 81.81 -0.53 40.08 40.08 90.75
S17 0 80 20 70.73 -4.28 26.77 27.11 99.09
S18 0 60 40 63.16 -5.30 13.20 14.22 111.90
S19 0 40 60 61.53 -4.59 8.33 9.51 118.84
S20 0 20 60 57.30 -7.10 1.07 7.18 171.44
S21 0 0 100 54.93 -5.25 -4.74 7.08 222.10

图2

有色纤维拼色样品在CIELAB色域空间中的分布"

图3

Kubelka-Munk单常数理论模型K/S值拟合曲线和实测曲线"

表4

染料拼色样品的实际配比与Kubelka-Munk 单常数理论模型拟合配比"

样品
编号
实际配比/%(o.m.f) 预测拟合配比/%(o.m.f)
天然红 天然黄 天然蓝 天然红 天然黄 天然蓝
F2 4 1 0 2.72 0.01 0
F3 4 0 1 2.54 0 0.02
F4 3 2 0 2.36 0.33 0
F5 3 1 1 2.42 0.16 0.61
F6 3 0 2 2.19 0 1.02
F7 2 3 0 1.89 0.92 0
F8 2 2 1 1.75 0.31 0.61
F9 2 1 2 1.78 0 1.07
F10 2 0 3 1.54 0 1.48
F11 1 4 0 0.80 1.66 0.01
F12 1 3 1 0.95 1.12 0.53
F13 1 2 2 0.83 0.62 0.87
F14 1 1 3 0.82 0.19 1.20
F15 1 0 4 0.79 0 1.54
F17 0 4 1 0.01 1.72 0.80
F18 0 3 2 0.01 1.14 1.17
F19 0 2 3 0.02 0.63 1.53
F20 0 1 4 0.02 0.18 1.70

表5

基于Stearns-Noechel模型计算有色纤维拼色样品的最优M值"

样品编号 最优M 样品编号 最优M
S2 0.048 3 S11 0.190 9
S3 0.126 4 S12 0.108 2
S4 0.090 5 S13 0.116 8
S5 0.123 7 S14 0.143 2
S6 0.036 0 S15 0.066 8
S7 0.169 1 S17 0.115 4
S8 0.074 4 S18 0.083 9
S9 0.164 3 S19 0.177 2
S10 0.046 1 S20 0.080 0

图4

Stearns-Noechel模型拟合和实测反射率曲线"

[1] 钱洁. 天然染料用于羊毛染色的研究进展[J]. 纺织报告, 2016(10): 4.
QIAN Jie. Research progress of wool dyeing with natural dyes[J]. Textile Reports, 2016(10): 4.
[2] 王祥荣. 天然染料的应用现状及研究进展[J]. 纺织导报, 2021(9): 24-29.
WANG Xiangrong. Application and research progress of natural dyes[J]. China Textile Leader, 2021(9):24-29.
[3] 任燕飞, 巩继贤, 张健飞, 等. 纺织品染色用微生物色素的研究进展[J]. 纺织学报, 2017, 38(1):163-168.
REN Yanfei, GONG Jixian, ZHANG Jianfei, et al. Research progress of microbial pigments used in textile dyeing[J]. Journal of Textile Research, 2017, 38(1):163-168.
[4] 王静静. 石榴皮色素的提取及其在羊毛纤维染色中的应用[J]. 染整技术, 2011, 33(2): 40-43.
WANG Jingjing. Extraction of pigment from pomegranate peel and its application in dyeing of wool fiber[J]. Textile Dyeing and Finishing Journal, 2011, 33(2): 40-43.
[5] 林明霞, 吴坚, 邓丽丽. 天然植物染料黄连染羊毛织物[J]. 针织工业, 2005(1): 47-49.
LIN Mingxia, WU Jian, DENG Lili. Wool fabric dyed with natural plant dye Coptis chinensis[J]. Knitting Industries, 2005(1): 47-49.
[6] 贾艳梅. 栎树叶色素对羊毛织物的染色及拼色[J]. 毛纺科技, 2013, 41(4): 47-50.
JIA Yanmei. Dyeing and combination dyeing of wool fabric with oak leaves pigment[J]. Wool Textile Journal, 2013, 41(4): 47-50.
[7] 蔡苏英. 麻栎壳天然色素在羊毛织物上的染色性能[J]. 纺织学报, 2011, 32(8):72-75.
CAI Suying. Dyeing performance of acutissima shell natural coloring matter for wool fabrics[J]. Journal of Textile Research, 2011, 32(8):72-75.
[8] 任燕飞, 巩继贤, 张健飞, 等. 茶色素染液pH值对羊毛织物染色效果及抗菌性的影响[J]. 纺织学报, 2016, 37(11):86-91.
REN Yanfei, GONG Jixian, ZHANG Jianfei, et al. Influence of dye solution pH value on dyeing effects and antibacterial properties of wool fabrics dyed with tea natural dye[J]. Journal of Textile Research, 2016, 37(11): 86-91.
[9] 钟绵国, 赵涛. 灵菌红素对羊毛纤维的染色动力学与热力学研究[J]. 毛纺科技, 2010, 38(7): 15-18.
ZHONG Mianguo, ZHAO Tao. Kinetics and thermodynamics studies of prodigiosin dyeing on wool fabrics[J]. Wool Textile Journal, 2010, 38(7): 15-18.
[10] 丁思佳, 王建明, 宋江彬. 天然染料靛蓝改性及对羊毛染色工艺研究[J]. 毛纺科技, 2016, 44(1): 33-36.
DING Sijia, WANG Jianming, SONG Jiangbin. Investigation on modification of natural indigo dye and the dyeing process of wool[J]. Wool Textile Journal, 2016, 44(1): 33-36.
[11] 罗勇. 植物染料复配染色技术研究及其在羊毛制品上的应用[D]. 上海: 东华大学, 2009:15-31.
LUO Yong. The research on complex dyeing of natural dyes and its application on wool fabrics[D]. Shanghai: Donghua University, 2009:15-31.
[12] 于伯龄. 10种天然染料染羊毛与丝绸的试验[J]. 染整技术, 2001, 23(3): 7-12.
YU Boling. Dyeing wool and silk with 10 kinds of natural dyes[J]. Textile Dyeing and Finishing Journal, 2001, 23(3): 7-12.
[13] 冯之兴. 天然染料对羊毛织物染色工艺的研究[D]. 苏州: 苏州大学, 2017:18-26.
FENG Zhixing. Studying of dyeing process on wool fabric with nature dyes[D]. Suzhou: Soochow University, 2017:18-26.
[14] 张毅, 王妮, 张瑞云, 等. 色纺纱成色机理的探讨[J]. 棉纺织技术, 2019, 47(4): 18-24.
ZHANG Yi, WANG Ni, ZHANG Ruiyun, et al. Discussion on the coloring mechanism of colored spun yarn[J]. Cotton Textile Technology, 2019, 47(4): 18-24.
[15] 沈加加, 张志强, 陈燕兵, 等. 基于Stearns-Noechel模型的混色毛条颜色预测[J]. 纺织学报, 2008, 29(11): 61-66.
SHEN Jiajia, ZHANG Zhiqiang, CHEN Yanbing, et al. Match prediction for blended-color wool tops based on Stearns-Noechel model[J]. Journal of Textile Research, 2008, 29(11): 61-66.
[16] 王卓, 杨瑞华, 潘博, 等. 基于Kubelka-Munk双常数理论的色纺纱配色模型[J]. 棉纺织技术, 2021, 49(2): 24-30.
WANG Zhuo, YANG Ruihua, PAN Bo, et al. Color matching model of colored spun yarn based on Kubelka-Munk double constant theory[J]. Cotton Textile Technology, 2021, 49(2): 24-30.
[17] 赵玉. 基于原色纤维混配色织物的呈色规律研究[D]. 上海: 东华大学, 2015: 9-16.
ZHAO Yu. Study on fabric coloring law based on primary-color fibers blending[D]. Shanghai: Donghua University, 2015: 9-16.
[18] DUNTLEY S Q. The prediction and control of colored fiber blends by optical means[J]. American Dyestuff Reporter, 1941, 30: 698-700.
[19] 张戈. 棉纤维色纺混色模型优化及配色方法研究[D]. 无锡: 江南大学, 2021: 30-38.
ZHANG Ge. Research on optimization of color prediction model and color matching method for color spun cotton fiber[D]. Wuxi: Jiangnan University, 2021: 30-38.
[1] 代亚敏, 刘宏臣, 毛志平, 陆辉, 徐红, 钟毅, 周培文. 活性染料拼色轧染过程中补液模型的研究[J]. 纺织学报, 2023, 44(01): 136-141.
[2] 王亮, 马晓光, 李俊君, 杨州. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(09): 88-94.
[3] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[4] 杨树 李玛莎. 羊毛纤维集合体的分形结构与其保暖性的关系[J]. 纺织学报, 2017, 38(08): 11-15.
[5] 任燕飞 巩继贤 张健飞 李政 李秋瑾 李辉芹. 纺织品染色用微生物色素的研究进展[J]. 纺织学报, 2017, 38(01): 163-168.
[6] 任燕飞 巩继贤 张健飞 付冉冉 王富邦. 茶色素染液pH值对羊毛织物染色效果及抗菌性能的影响[J]. 纺织学报, 2016, 37(11): 86-91.
[7] 杨慕莹 翟红霞 邢铁玲 盛家镛 陈国强 田驰 刘雅光. 微生物染料及其在纺织染色中的应用[J]. 纺织学报, 2016, 37(08): 165-170.
[8] 孙艳丽 姚金波 李博 贾书刚. 羊毛角蛋白溶液的离子液体法制备[J]. 纺织学报, 2015, 36(05): 59-62.
[9] 路艳华 卢声 于志财. 青黛与姜黄对柞蚕丝织物的套染[J]. 纺织学报, 2013, 34(9): 73-0.
[10] 卢雨正 高卫东. 基于图像分割的拼色纺织品分色算法[J]. 纺织学报, 2012, 33(9): 55-60.
[11] 曹机良 许志忠 李亚辉 韩付响. 黄连素的提取及其对锦纶6的染色性能[J]. 纺织学报, 2012, 33(9): 88-93.
[12] 蔡苏英. 麻栎壳天然色素在羊毛织物上的染色性能[J]. 纺织学报, 2011, 32(8): 72-75.
[13] 柴丽琴;邵建中;周岚. 棉纤维的非反应型改性及其在天然染料染色中的应用[J]. 纺织学报, 2010, 31(8): 86-91.
[14] 李凤艳;杨巧芬;洪彩虹;钟智丽. 天然茶色素对棉纤维的铁离子媒染染色[J]. 纺织学报, 2010, 31(7): 60-63.
[15] 周岚;邵建中;柴丽琴. 阳离子改性剂在棉纤维天然染料染色中的应用[J]. 纺织学报, 2009, 30(10): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[2] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[3] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[4] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[5] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[6] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[7] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[8] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .
[9] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58 -60 .
[10] 储咏梅;王琪;王国和. 竹浆纤维纯纺及混纺纱线弹性测试与分析[J]. 纺织学报, 2006, 27(2): 68 -70 .