纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 104-110.doi: 10.13475/j.fzxb.20220202107

• 染整与化学品 • 上一篇    下一篇

聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能

钱红飞1,2(), KOBIR MD. Foysal1, 陈龙1, 李林祥1, 方帅军1,2   

  1. 1.绍兴文理学院 纺织服装学院,浙江 绍兴 312000
    2.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2022-02-16 修回日期:2022-11-04 出版日期:2023-03-15 发布日期:2023-04-14
  • 作者简介:钱红飞(1964—),女,教授,博士。主要研究方向为新型分散染料合成应用与纺织品染色加工理论与技术研究。E-mail:qhf@usx.edu.cn
  • 基金资助:
    国家自然科学基金项目(21376149)

Structure of polylactide/poly(3-hydroxybutyrate-co-3-hydroxylvalerate) blend fibers and dyeing properties for their fabrics

QIAN Hongfei1,2(), KOBIR MD. Foysal1, CHEN Long1, LI Linxiang1, FANG Shuaijun1,2   

  1. 1. College of Textile and Apparel, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2022-02-16 Revised:2022-11-04 Published:2023-03-15 Online:2023-04-14

摘要:

聚乳酸(PLA)与聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)共混纺丝是改善聚乳酸(PLA)纤维的耐热性和柔韧性的方法之一。为了揭示共混纤维结构对其织物染色性能的影响规律,借助热重分析仪、差示扫描量热仪、X射线衍射仪等手段分别对共混纤维和PLA纤维的微结构和热性能进行分析。采用高、中、低温3类分散染料,对2类纤维织物的染色升温速率曲线、提升性和各项染色牢度等性能进行了比较。结果表明:共混纤维中PLA与PHBV两相分离,PLA相具有与PLA纤维相似的晶型结构,其结晶度较高,而PHBV相中形成较低的结晶;与PLA纤维相比,共混纤维的熔点较高,玻璃化温度稍低,因此其能在较低的温度下达到上染平衡;在相同的染色条件下,共混纤维织物的表观染色深度几乎是PLA织物的2倍;2类纤维织物的耐皂洗色牢度性能均不够理想。

关键词: 聚乳酸, 聚(3-羟基丁酸酯-co-3-羟基戊酸酯), 共混纤维, 结构, 染色性能

Abstract:

Objective In order to improve the heat resistance and flexibility of polylactic acid (PLA) fibers, the polylactide (PLA)/3-hydroxybutyrate-co-3-hydroxyl valentate (PHBV) blend fibers is one of the wildly used methods which received increasing attention. The literature for their preparation process, microstructure and mechanical properties were frequently found. But the relationship between the microstructure and dyeing properties lacked systematic investigation. The aim of this work is to explore the effect of structure for PLA/PHBV blend fibers on the dyeing properties of disperse dyes for their fabrics with a comparison to that of PLA fibers.

Method By using the thermal weight, differential scanning calorimeter and X-ray diffraction methods, the crystallization and thermal properties including glass transition, melting temperature and thermal stability for the PLA/PHBV blend fibers and PLA fibers were investigated, respectively. The dyeing properties such as dyeing rate, build-up and color fastness of two fabrics were measured with three different types of disperse dyes which corresponded to the grades of low, medium and high energy, respectively.

Results The analysis of X-ray diffraction showed that the pattern of peaks (16.74°, 19.30°) for the PLA/PHBV blend fibers was similar to that for the PLA fibers (16.68°, 18.90°) except a small peak at 13.82° being found (Fig.2). The crystallinity for PLA component (83.16%) was larger than the PLA fibers (77.14%). Based on the results obtained from previous research, it was confirmed that there were microphase separation between PLA and PHBV component, the small diffraction peak was derived from the PHBV component, which formed lower crystallinity. The measurement of the differential scanning calorimeter revealed that the glass transition temperature of the PLA / PHBV blend fibers (72.21 ℃) was slightly lower than that of the PLA fibers (74.85 ℃) (Fig.3), while the melting temperature (167.46 ℃) was slightly higher than that of the PLA fibers (166.35 ℃). The analysis of thermal weight illustrated that the thermal decomposition for the PHBV component in blend fibers occurred at the temperature of 280.67 ℃, and at 358.39 ℃ for PLA component, which was higher than that for the pure PLA fibers (343.30 ℃), which may be caused by its higher degree of crystallinity (Fig.4). In addition, the results for dyeing properties showed that the blend fiber has a lower dyeing transition temperature (TD) than the PLA fibers, and can reach the dyeing equilibrium at a lower temperature (Fig.5). In the case of high-energy grade disperse dyes, the Dyeing transition temperature (TD) was 70 ℃ for the blend fibers and 80 ℃ for the PLA fibers, and the temperature of dyeing equilibrium was 100 ℃ for the blend fibers and 110 ℃ for the PLA fibers. Under the same dyeing conditions, the apparent color depth value of the dyed blend fabric was almost twice that of the dyed PLA fabric (Fig.6), and its soap washing fastness performance was not good enough as the PLA fibers, especially for the staining fastness on wool, nylon and acetate fibers was only 1-2 rate (Tab.1).

Conclusion It was concluded that two components in blend fibers were in the form of microphase separation,the PLA phase had a similar crystal structure and a higher crystallinity compared to that of the PLA fibers, and the PHBV phase formed a small number of crystal structures. Therefore, PLA / PHBV blend fibers had a slightly higher melting point and lower glass transition temperature than PLA fibers, while PLA components had higher decomposition temperatures than PLA fibers, but the PHBV component was lower than the PLA components. Owing to the lower glass transition temperature, the blend fibers exhibited a higher dyeing rate than the PLA fibers. Under the same dyeing conditions, the color of the fabric derived from PLA/PHBV blend fibers was deeper than that of PLA fabric, and the apparent color depth value of the former was generally about 2 times that of the latter due to higher amorphous area in blend fibers. The color fastness properties for the fabric from the blend fibers was not desirable. Further research is needed to improve its dyeing properties to promote the development and application of these biodegradable fibers.

Key words: polylactide, poly(3-hydroxybutyrate-co-3-hydroxylvalerate), blend fiber, structure, dyeing property

中图分类号: 

  • TS193.1

图1

染色工艺示意图"

图2

2种纤维的X射线衍射曲线"

图3

2种纤维的DSC曲线"

图4

2种纤维的TG和DTG曲线"

图5

2种织物的升温上染速率曲线"

图6

2种织物的染色提升性"

表1

Color fastness performances for two kinds of fibers级"

织物 染料名称 耐皂洗色牢度 耐日晒
色牢度
变色 沾色
羊毛 腈纶 聚酯 聚酰胺 二醋酯
PLA 分散红玉S-2GFL 3~4 2 3 2 1~2 3 1~2 3~4
分散红玉SE-GF 3 2 3 2 1~2 3 2 3
分散红玉FB 3 2~3 4 2~3 2 4 2 3
分散黄E-GL 4 3 4 3 2 3 2 4~5
分散黄SE-4GL 3 5 5 4~5 4 5 4~5 4
分散嫩黄SF-6G 4 4~5 5 4 3~4 5 3~4 4
分散蓝EX 3 1~2 3 2 1~2 2 1~2 3
分散蓝HGL 4 3 4 3 2~3 4 2~3 3
分散蓝2BLN 3 2 3 2 1~2 3 1~2 3
PLA/PHBV 分散红玉S-2GFL 4 1~2 3 2 1~2 2~3 1~2 3
分散红玉SE-GF 3 1~2 3 2 1~2 3 1~2 4
分散红玉FB 4 2 3 2 1~2 3 1~2 4~5
分散黄E-GL 4 2~3 3 2~3 1~2 3 1~2 4
分散黄SE-4GL 4 4 5 4 3~4 4~5 3~4 4
分散嫩黄SF-6G 3 4 5 4 3~4 4~5 3~4 4~5
分散蓝EX 4 2 3 2 2~3 3 2 3~4
分散蓝HGL 3 2~3 4 3 2 4 2 3~4
分散蓝2BLN 4 2 3 2 3 3 2 3~4
[1] AVINC O, KHODDAM A. Overview of poly(lactic acid) (PLA) fibre: part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibers[J]. Fibre Chemistry, 2009, 41(6): 391-401.
doi: 10.1007/s10692-010-9213-z
[2] HUSSAIN T, TAUSIF M, ASHRAF M. A review of progress in the dyeing of eco-friendly aliphatic polyester based polylactic acid fabrics[J]. Journal of Cleaner Production, 2015, 108: 476-483.
doi: 10.1016/j.jclepro.2015.05.126
[3] AVINC O, KHODDAM A. Overview of poly(lactic acid) (PLA) fifibre: part II: wet processing; pretreatment, dyeing, clearing, finishing, and washing properties of poly(lactic acid) fibers[J]. Fibre Chemistry, 2010, 42(1): 68-78.
doi: 10.1007/s10692-010-9226-7
[4] HUFENUS R, REIFLFLER F A, MAMIURA-WEBER K, et al. Biodegradable bicomponent fibers from renewable sources: melt-spinning of poly(lactic acid) and poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)][J]. Macromelecular Material and Engineering, 2012, 297: 75-84.
[5] LI L Z, HUANG W, WANG B J, et al. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers[J]. Ploymer, 2015, 68: 183-194.
doi: 10.1016/j.polymer.2015.05.024
[6] PIVSA-ART S, SRISAWAT N, O-CHAROEN N, et al. Preparation of knitting socks from poly (lactic acid) and poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxy-valerate](PHBV) blends for textile industrials[J]. Energy Procedia, 2011, 9: 589-597.
doi: 10.1016/j.egypro.2011.09.069
[7] 段雨婷, 许国志. PLA/PHBV共混改性研究[J]. 中国塑料, 2017, 31(1): 29-36.
DUAN Yuting, XU Guozhi. Study on blending modification of PLA/PHBV[J]. China Plastics, 2017, 31(1): 29-36.
[8] 钱红飞, 张芳. 聚乳酸纤维分散染料染色性能的研究[J]. 纺织学报, 2005, 26(1): 13-16.
QIAN Hongfei, ZHANG Fang. Study on dyeing properties of PLA fiber with disperse dyes[J]. Journal of Textile Research, 2005, 26(1): 13-16.
[9] 武奇奇, 李敏, 刘怡宁, 等. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(1): 79-83, 90.
WU Qiqi, LI Min, LIU Yining, et al. Dyeing properties of polylactic acid fabric by carrier dyeing method[J]. Journal of Textile Research, 2019, 40(1): 79-83, 90.
[10] HUANG H, MA W, ZHANG S, LU R. Optimal dyeing systems for resistance to the physical strength loss of the PLA/cotton blend fabric[J]. Journal of Applied Polymer Science, 2011, 120(2): 886-895.
doi: 10.1002/app.v120.2
[11] YANG R H, KAN C W. Effect of heat setting parameters on some properties of PLA knitted fabric[J]. Fibers Polymer, 2013, 14(3): 1347-1353.
doi: 10.1007/s12221-013-1347-1
[12] 王华清, 姚禹国. PLA/PHBV共混长丝织物的性能及染整工艺[J]. 印染, 2019(20): 34-38.
WANG Huaqing, YAO Yuguo. Properties of PLA/PHBV blend filament fabric and its wet processing[J]. China Dyeing & Finishing, 2019 (20): 34-38.
[13] 沈云云, 王华清, 夏建明. PLA/PHBV长丝经编针织物低温载体染色工艺[J]. 针织工业, 2020(8): 48-51.
SHEN Yunyun, WANG Huaqing, XIA Jianming. Low temperature carrier dyeing process of PLA/PHBV filament warp knitted fabric[J]. Knitting Industries, 2020(8): 48-51.
[14] 赵作显, 洪剑寒, 严喆, 等. 生物可降解聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸共混物的相容性和结晶性[J]. 纺织学报, 2018, 39(8): 1-8.
ZHAO Zuoxian, HONG Jianhan, YAN Zhe, et al. Miscibility and crystallization properties of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends[J]. Journal of Textile Research, 2018, 39(8): 1-8.
doi: 10.1177/004051756903900101
[1] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[2] 周志芳, 周赳, 彭稀, 黄锦波. 三维间隔空芯可变提花织物的织造工艺设计[J]. 纺织学报, 2023, 44(03): 67-72.
[3] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[4] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[5] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[6] 赖安琪, 蒋高明, 李炳贤. 全成形毛衫花式结构三维仿真[J]. 纺织学报, 2023, 44(02): 103-110.
[7] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[8] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[9] 李婷, 李文瑞, 张晨曦, 迟克栋, 张明明, 刘海辉, 黄庆. 高速纺丝工艺下Lyocell纤维结构对其原纤化的影响[J]. 纺织学报, 2023, 44(02): 11-18.
[10] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[11] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[12] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[13] 李哲阳, 马明波, 周文龙. 莨纱绸制备用河泥的关键成分及其结构特征[J]. 纺织学报, 2023, 44(02): 230-237.
[14] 张晶, 黄治恒, 牛广亮, 梁生, 杨旅云, 魏磊, 周时凤, 侯冲, 陶光明. 热拉式多材料纤维光电子技术研究进展与展望[J]. 纺织学报, 2023, 44(01): 11-20.
[15] 冯英杰, 蒋高明, 吴光军, 金帅. 全成形运动护膝结构设计及成形方法[J]. 纺织学报, 2023, 44(01): 112-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!