纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 11-18.doi: 10.13475/j.fzxb.20220103808
张少月1,2, 岳江昱1,2, 杨家乐1,2, 柴晓帅1,2, 冯增国1,2, 张爱英1,2()
ZHANG Shaoyue1,2, YUE Jiangyu1,2, YANG Jiale1,2, CHAI Xiaoshuai1,2, FENG Zengguo1,2, ZHANG Aiying1,2()
摘要:
为实现聚已内酯(PCL)环境友好高分子材料在相变储能领域的应用,以PCL为壳层支撑材料,聚乙二醇(PEG)为核层相变材料,羟基化多壁碳纳米管(MWCNTs-OH)作为导热增强材料分散至核层溶液中,采用同轴静电纺丝法制备了PCL/PEG/MWCNTs-OH复合相变纤维膜,并对其结构和性能进行分析。结果表明:复合相变纤维表面光滑,具有较为完善的核-壳结构;复合相变纤维膜呈现较高的断裂应力和断裂应变,添加质量分数为4%的MWCNTs-OH时复合相变纤维膜的断裂应力为7.43 MPa,断裂应变为132.2%;核层中MWCNTs-OH的加入,提高了复合相变纤维膜的导热性能和热稳定性,而其相变温度和焓值则无明显变化,相变温度在38.85~39.35 ℃之间,略高于人体的正常温度,在储能调温生物医用材料领域具有潜在的应用价值。
中图分类号:
[1] |
LEONG K Y, RAHMAN M R A, GURUNATHAN B A. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges[J]. Journal of Energy Storage, 2019, 21: 18-31.
doi: 10.1016/j.est.2018.11.008 |
[2] | 蔡以兵, 孙桂岩, 刘盟盟, 等. 定形相变复合材料的研究进展:静电纺丝法[J]. 高分子通报, 2015(2): 18-25. |
CAI Yibing, SUN Guiyan, LIU Mengmeng, et al. Research progress of formalized phase change composites:electrospinning method[J]. Polymer Bulletin, 2015(2): 18-25. | |
[3] |
LIU Z L, TANG B T, ZHANG S F. Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2020.110678.
doi: 10.1016/j.solmat.2020.110678 |
[4] |
GRAHAM M, SMITH J, BILTON M, et al. Highly stable energy capsules with nano-SiO2 pickering shell for thermal energy storage and release[J]. ACS Nano, 2020, 14 (7): 8894-8901.
doi: 10.1021/acsnano.0c03706 |
[5] | 师奇松, 赵祎宁, 张鸣春, 等. 静电纺丝技术制备聚丙烯腈/铕-脂肪酸相变和发光双功能复合纳米纤维[J]. 高等学校化学学报, 2015, 36 (9): 1807-1812. |
SHI Qisong, ZHAO Yining, ZHANG Mingchun, et al. Electrospinning fabrication of PAN/Eu-fatty acid phase change and luminescence bifunctional composite nanofibers[J]. Chemical Journal of Chinese Universities, 2015, 36 (9): 1807-1812. | |
[6] |
LU Y, XIAO X D, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019, 355: 532-539.
doi: 10.1016/j.cej.2018.08.189 |
[7] |
MCCANN J T, MARQUEZ M, XIA Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006, 6 (12): 2868-2872.
pmid: 17163721 |
[8] |
NGUYEN T T T, LEE J G, PARK J S. Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (core/sheath) composite non-woven mats[J]. Macromolecular Research, 2011, 19 (4): 370-378.
doi: 10.1007/s13233-011-0409-8 |
[9] | ZHANG L, ZHOU K C, WEI Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233: 208-219. |
[10] | LI A, DONG C, DONG W J, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10 (38): 32093-32101. |
[11] |
XU B, ZHANG C X, CHEN C H, et al. One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light-heat conversion performance[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133 (3): 1417-1428.
doi: 10.1007/s10973-018-7192-0 |
[12] |
FRIDRIKH S, YU J, BRENNER M, et al. Controlling the fiber diameter during electrospinning[J]. Physical Review Letters, 2003. DOI: 10.1103/PhysRevLett.90.144502.
doi: 10.1103/PhysRevLett.90.144502 |
[13] |
BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: Comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945-951.
doi: 10.1016/j.applthermaleng.2015.07.083 |
[14] |
SANADA K, TADA Y, SHINDO Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40 (6): 724-730.
doi: 10.1016/j.compositesa.2009.02.024 |
[15] | 张国兵, 王曙东, 何远方, 等. 聚酰胺6/聚乙二醇相变调温纳米纤维的结构与性能[J]. 纺织学报, 2014, 35 (7): 30-35. |
ZHANG Guobing, WANG Shudong, HE Yuanfang, et al. Structure and properties of polyamide 6/polyethylene glycol phase transition temperature-regulated nanofibers[J]. Journal of Textile Research, 2014, 35 (7): 30-35. | |
[16] | 柯惠珍, 蔡以兵, 魏取福, 等. 静电纺PA-SA/PET/MWNTs复合相变纤维膜的制备及储热性能研究[J]. 化工新型材料, 2012, 40 (8): 23-25, 31. |
KE Huizhen, CAI Yibing, WEI Qufu, et al. Preparation and heat storage of PA-SA/PET/MWNTs composite phase change fiber membrane by electrostatic spinning[J]. New Chemical Materials, 2012, 40 (8): 23-25,31. | |
[17] | 柯惠珍, 李永贵. 癸酸-棕榈酸-硬脂酸/聚丙烯腈/氮化硼复合相变纤维膜的传热性能[J]. 纺织学报, 2019, 40(3): 26-31. |
KE Huizhen, LI Yonggui. Heat transfer properties of capric-palmitic acid-stearic acid/polyacrylonitrile/boron nitride composite phase change fiber membrane[J]. Journal of Textile Research, 2019, 40(3): 26-31. | |
[18] |
MA K L, ZHANG X L, JI J, et al. Application and research progress of phase change materials in biomedical field[J]. Biomaterials Science, 2021, 9(17): 5762-5780.
doi: 10.1039/d1bm00719j pmid: 34351340 |
[19] |
VIANNIE L R, BANAPURMATH N R, SOUDAGAR M E M, et al. Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly(dimethylsiloxane) based nanocomposite sheets[J]. Journal of Environmental Chemical Engineering, 2021. DOI: 10.1016/j.jece.2021.106550.
doi: 10.1016/j.jece.2021.106550 |
[20] |
LIU X, XU S X, KUANG X L, et al. Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase[J]. RSC Advances, 2016, 6 (108): 106690-106696.
doi: 10.1039/C6RA24195F |
[1] | 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10. |
[2] | 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68. |
[3] | 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(04): 194-202. |
[4] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
[5] | 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194. |
[6] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[7] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[8] | 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134. |
[9] | 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129. |
[10] | 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25. |
[11] | 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6. |
[12] | 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41. |
[13] | 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47. |
[14] | 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34. |
[15] | 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26. |
|