纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 111-118.doi: 10.13475/j.fzxb.20220303008

• 染整与化学品 • 上一篇    下一篇

儿茶素络合染料的制备及其对蚕丝织物的染色性能

齐迪1, 丁洪1, 王祥荣1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州大学 纺织行业天然染料重点实验室, 江苏 苏州 215123
  • 收稿日期:2022-03-08 修回日期:2022-12-23 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 王祥荣(1965—),男,教授。主要研究方向为生态纺织化学品及其应用技术。E-mail:wangxiangrong@suda.edu.cn
  • 作者简介:齐迪(1996—),女,硕士生。主要研究方向为纺织品生态染整加工技术研究。
  • 基金资助:
    江苏省市场监督管理局科技技术项目(KJ2022082)

Preparation of catechin complex dye and its dyeing properties on silk fabric

QI Di1, DING Hong1, WANG Xiangrong1,2()   

  1. 1. College of Textile and Garment Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Key Laboratory of Natural Dyes of China National Textile and Apparel Council, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2022-03-08 Revised:2022-12-23 Published:2023-03-15 Online:2023-04-14

摘要:

为开发植物染料对纺织品染色的新方法,提高染色产品的色牢度,通过儿茶素与Fe2+的相互作用,制备了铁离子络合染料C-Fe。借助傅里叶变换红外光谱仪、紫外-可见光分光度计、扫描电镜能谱仪、X射线光电子能谱仪等手段对络合染料进行表征和分析,并考察了络合染料对蚕丝织物的染色性能。结果表明:铁离子成功与儿茶素络合,获得络合染料结构;络合染料C-Fe上染蚕丝织物的最佳工艺为染色温度90 ℃,pH值为4,保温续染60 min;络合染料染色的蚕丝织物耐日晒色牢度和耐摩擦色牢度均达到3级,耐汗渍色牢度和耐皂洗色牢度均在4级以上;染色后蚕丝织物的紫外线防护系数为72,显示出优异的防紫外线性能。

关键词: 儿茶素, 铁离子, 络合植物染料, 天然染料, 蚕丝, 染色

Abstract:

Objective The application of natural dyes in textile printing and dyeing has attracted extensive attention because of their non-toxic and harmless characteristics. In order to improve the color yield and color fastness of plant dye dyeing products, mordant dyeing treatment is often needed in the dyeing process, but this will lead to long dyeing process and a large number of metal ions in wastewater. Metal ions were introduced into natural dye molecules in advance through complexation reaction to prepare metal complexed plant dyes, and their dyeing properties and influencing factors on textiles were studied in detail. These studies were deemed necessary for developing short dyeing process with natural dyes and achieving energy saving and emission reduction.

Method In this paper, catechin-iron ion complex dye C-Fe was prepared by hydrothermal method through the coordination reaction between catechin and metal ion Fe2+. Fourier transform infrared spectroscopy (FT-IR), ultraviolet visible spectrophotometer (UV-VIS), scanning electron microscope energy spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were adopted to characterize and analyze the structure of the complex dyes. The dyeing of a silk fabric with iron ion complexed catechin was studied by grinding dispersion method. The influences of technological parameters such as pH value, dyeing temperature and dye dosage on the K/S value of textiles were analyzed, and the technological conditions were optimized.

Results Energy spectrum analysis of plant complex dyes showed that the C-Fe molecules contained not only C and O elements, but also Fe elements(Fig.2, Tab.1). Based on the energy spectrum scanning component element content analysis and the structure analysis of the complex dye, the complex ratio of C-Fe molecule was calculated as 1:2. UV-VIS spectrum analysis showed that the maximum absorption wavelength of catechin was red shifted after complexation with metal ions, which was consistent with the law that the UV-VIS spectrum of dye molecules moved to the long wavelength direction caused by the attraction of metal ions to electrons (Fig.3). IR spectrum analysis showed that the complex dye C-Fe produced a new absorption peak at 556 cm-1, indicating that it was the stretching vibration peak of Fe—O bond formed after coordination (Fig.4). X-ray photoelectron analysis showed that the peak position of Fe element was found at 706.7 eV for the complex dye C-Fe (Fig.5). The coordination of metal ions had different effects on the whole molecular chemical environment. The complex dye occurred on the adjacent hydroxyl groups or the adjacent hydroxyl groups and carbonyl groups of the benzene ring (Fig.6, Fig.7, Tab.2 and Tab.3).

A complex dye suspension with an average particle size of 405.47 nm was obtained by grinding and dispersion (Fig.8). The test showed that the optimal process parameters for dyeing silk fabrics with complex dye C-Fe were pH value of 4, dyeing temperature of 90 ℃, and temperature maintaining and continuous dyeing for 60 min (Fig.9, Fig.10 and Fig.11). The color fastness to sunlight and rubbing of silk fabrics dyed with complex dye C-Fe reached grade 3, and the color fastness to perspiration and soaping were all above grade 4 (Tab.4). The UPF value of silk fabrics dyed with complex dye was 72, reflecting excellent ultraviolet protection performance (Tab.5).

Conclusion In this paper, plant complex dyes were prepared by the coordination reaction between plant dyes and metal ions, and then the silk fabric was dyed with good dyeing effect, and the fabric demonstrated good color fastness and UV resistance. The experimental results show that the preparation of plant complex dyes from plant dyes as raw materials is feasible for textile dyeing. It is expected to be developed as a short process technology for plant dye dyeing, which provides a theoretical basis for the development of metal complex natural dyes and their application in textile dyeing.

Key words: catechin, iron ion, complex plant dye, natural dye, silk, dyeing

中图分类号: 

  • TS193.2

图1

络合染料C-Fe制备反应"

图2

儿茶素的EDS扫描图"

图3

络合染料C-Fe的EDS扫描图"

表1

儿茶素和络合染料C-Fe的EDS分析结果"

染料 C含量 O含量 Fe含量
儿茶素 72.082 27.657 0.000
C-Fe 68.709 25.304 5.651

图4

儿茶素和络合染料C-Fe的紫外-可见光谱"

图5

儿茶素和络合染料C-Fe红外光谱"

图6

儿茶素和络合染料C-Fe的XPS图谱"

图7

儿茶素和络合染料C-Fe的C1s的高分辨谱"

表2

儿茶素和络合染料C-Fe的C1s分析结果"

染料 峰位/
eV
面积/
(mAU·min)
半峰宽/
eV
高斯-洛仑兹
比/%
儿茶素 284.66 13 456.61 1.72 80
286.51 4 578.83 1.72 80
289.24 3 876.42 2.18 80
C-Fe 284.69 12 833.25 1.70 80
286.08 11 153.28 2.58 80
289.30 3 517.50 2.22 80

图8

儿茶素和络合染料C-Fe的O1s的高分辨谱"

表3

儿茶素和络合染料C-Fe的O1s分析结果"

染料 峰位/
eV
面积/
(mAU·min)
半峰宽/
eV
高斯-洛仑兹
比/%
儿茶素 531.95 13 292.96 1.52 80
532.99 4 958.49 1.12 80
533.80 8 675.05 1.62 80
C-Fe 531.89 5 333.39 1.26 80
532.89 2 257.90 1.47 80
533.19 6 757.86 3.19 80
533.79 5 361.96 1.75 80

图9

C-Fe研磨前后的粒径分布"

图10

不同pH值下C-Fe染色蚕丝织物的K/S值曲线"

图11

不同温度下C-Fe染色蚕丝织物的K/S值曲线"

图12

不同时间时C-Fe染色蚕丝织物的K/S值曲线"

表4

C-Fe染色蚕丝织物测试结果"

颜色特征值 色牢度/级
K/S L* a* b* C* h/(°) 耐光色
牢度
耐皂洗色牢度 耐碱汗渍色牢度 耐酸汗渍色牢度 耐摩擦色牢度
变色 棉沾 丝沾 变色 棉沾 丝沾 变色 棉沾 丝沾 湿
5.85 47.58 2.78 5.02 7.57 66.98 3 4 4~5 4~5 4 4~5 4~5 4 4~5 4~5 3 3

表5

C-Fe染蚕丝织物抗紫外线指数"

织物 UPF值 T(UVA)av/% T(UVB)av/%
蚕丝织物 6 25.82 10.31
染色后蚕丝织物 72 2.16 1.14
[1] 陈荣圻. 天然染料及其染色(待续)[J]. 染整技术, 2018, 40(8): 1-7.
CHEN Rongqi. Natural dyes and their dyeing (to be continued)[J]. Textile Dyeing and Finishing Journal, 2018, 40(8): 1-7.
[2] 刘帆, 刘姝瑞, 谭艳君, 等. 天然植物染料的发展及应用[J]. 纺织科学与工程学报, 2021, 38(1): 52-58.
LIU Fan, LIU Shurui, TAN Yanjun, et al. Development and application of natural vegetable dyes[J]. Journal of Textile Science and Engineering, 2021, 38(1): 52-58.
[3] 黄逸武, 李俊玲, 范雪荣. 天然染料染色的研究进展[J]. 现代丝绸科学与技术, 2021, 36(3): 31-35.
HUANG Yiwu, LI Junling, FAN Xuerong. Research progress of natural dye dyeing[J]. Modern Silk Science and Technology, 2021, 36(3): 31-35.
[4] LUO Yunlian. Dyeing Technology of real silk with the natural curcumine[J]. Advanced Materials Research, 2014, 2951(881-883): 122-124.
[5] LI Ke, DING Qijiao, ZHANG Hui. Eco-friendly dyeing of cotton fabric using natural dye from orange peel[J]. Journal of The Textile Institute, 2022, 113(3): 7-10.
[6] 周琪. 植物基天然媒染剂的开发及其在羊毛织物染色和功能整理中的应用[D]. 重庆: 西南大学, 2021: 75-76.
ZHOU Qi. Development of plant-based natural mordant and its application in wool fabric dyeing and functional finishing[D]. Chongqing: Southwest University, 2021: 75-76.
[7] YIN Yunjie, FEI Liang, WANG Chaoxia. Optimization of natural dye extracted from phytolaccaceae berries and its mordant dyeing properties on natural silk fabric[J]. Journal of Natural Fibers, 2017, 15(1): 69-79.
doi: 10.1080/15440478.2017.1320259
[8] 潘理黎, 高寒, 金月祥, 等. 合成金属离子捕捉剂用于皮草染色废水的深度除铬[J]. 浙江工业大学学报, 2015, 43(3): 288-292.
PAN Lili, GAO Han, JIN Yuexiang, et al. Synthetic metal ion capture agent for deep chromium removal from fur dyeing wastewater[J]. Journal of Zhejiang University of Technology, 2015, 43(3): 288-292.
[9] 陈荣圻. 酸性染料和中性染料的重金属问题[J]. 染料与染色, 2009, 46(4): 1-6.
CHEN Rongqi. Heavy metals in acid dyes and neutral dyes[J]. Dyestuffs and Coloration, 2009, 46(4): 1-6.
[10] ZHOU Yujun, WANG Wenli, YI Tingjuan, et al. Experimental verification and theoretical analysis of silk dyeing and finishing functions with modified natural tea polyphenols dye[J]. Advanced Materials Research, 2013, 843(843): 102-105.
doi: 10.4028/www.scientific.net/AMR.843
[11] YAN Chengcheng, DONG Fengchen, HUANG Gang, et al. Research on dyeing behavior of Tencel fabric dyeing with Pu-Erh tea dyestuff[J]. Advanced Materials Research, 2013, 2735(821-822): 585-588.
[12] 刘正明, 刘建华, 余志成. 黄芩苷-Al(Ⅲ)络合染料的制备及其真丝绸染色[J]. 浙江理工大学学报(自然科学版), 2011, 28(2): 155-159.
LIU Zhengming, LIU Jianhua, YU Zhicheng. Preparation of baicalin Al (Ⅲ) complex dye and its real silk dyeing[J]. Journal of Zhejiang Sci-Tec University (Natural Sciences Edition), 2011, 28(2): 155-159.
[13] 王钢力, 于健东, 田金改, 等. 儿茶药材化学成分分析:反相高效液相色谱法测定儿茶中儿茶素和表儿茶素的含量[J]. 药物分析杂志, 1999(2): 16-18.
WANG Gangli, YU Jiandong, TIAN Jin'gai, et al. Analysis of chemical components of catechu:determination of catechin and epicatechin in catechu by RP-HPLC[J]. Journal of Pharmaceutical Analysis, 1999(2): 16-18.
[14] HUANG Xiaocui, LIU Chen. Analysis of natural mordant to B. mori silk fabrics dyeing with tea extract[J]. IOP Conference Series: Materials Science and Engineering, 2019, 585: 12044.
doi: 10.1088/1757-899X/585/1/012044
[15] 郭丽, 戴伟东, 朱荫, 等. 酯型儿茶素的热稳定性及其上染蚕丝效果[J]. 纺织学报, 2016, 37(9): 90-93.
GUO Li, DAI Weidong, ZHU Yin, et al. Thermal stability of ester catechin and its dyeing effect on silk[J]. Journal of Textile Research, 2016, 37(9): 90-93.
[16] 李月. 大豆异黄酮苷元—金属络合物的合成、表征及其抗衰老药理活性的研究[D]. 广州: 华南理工大学, 2016: 30-32.
LI Yue. Synthesis, characterization and anti-aging pharmacological activity of soybean isoflavone aglycone metal complex[D]. Guangzhou: South China University of Technology, 2016: 30-32.
[17] 杨彬. 铁络合染料的合成研究[J]. 染料与染色, 2018, 55(4): 1-4.
YANG Bin. Synthesis of iron complex dyes[J]. Dyestuffs and Coloration, 2018, 55(4): 1-4.
[18] SZYMCZYK M, EL-SHAFEI A, FREEMAN H S. Design, synthesis, and characterization of new iron-complexed azo dyes[J]. Dyes and Pigments, 2005, 72(1): 8-15.
doi: 10.1016/j.dyepig.2005.07.009
[1] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[2] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[3] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[4] 苏淼, 周凯丽, 段怡婷, 鲁佳亮, 杨丽梅. 基于色度测量的乾隆色谱色彩特征研究[J]. 纺织学报, 2023, 44(03): 132-138.
[5] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[6] 蒋阳, 崔彪, 山传雷, 刘殷, 张艳红, 许长海. 天然染料染色羊毛的色域拓展及颜色预测模型[J]. 纺织学报, 2023, 44(02): 199-206.
[7] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[8] 张福沐, 刘端武, 胡跃明. 染色机助剂智能配送系统的构建及实践[J]. 纺织学报, 2022, 43(11): 179-187.
[9] 王瑞, 司银松, 芦浩浩, 杲爽, 傅雅琴. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
[10] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
[11] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[12] 吴乐, 张倩, 杨万然, 徐朝月, 王维冠, 侯曦. 基于增强现实技术的筒子纱印染锁扣机器人运维巡检系统研究[J]. 纺织学报, 2022, 43(09): 34-40.
[13] 杨晓波. 基于交互式遗传算法的三维服装款式研究[J]. 纺织学报, 2022, 43(06): 145-150.
[14] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[15] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!