纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 139-146.doi: 10.13475/j.fzxb.20210911508

• 染整与化学品 • 上一篇    下一篇

粘胶织物中烟酰胺的释放曲线及其模型拟合

朱维维1,2, 龙家杰1,2, 施楣梧1,2,3()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.超临界流体无水绳状匹染技术科研基地(中国纺织工程学会), 江苏 苏州 215123
    3.北京海淀第57离职干部休养所, 北京 100035
  • 收稿日期:2021-09-28 修回日期:2022-10-22 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 施楣梧(1957—),男,教授级高工,博士。主要研究方向为电磁纺织品、阻燃材料及其它功能性纤维材料的开发。E-mail:shimeiwu@263.net.cn
  • 作者简介:朱维维(1989—),女,博士。主要研究方向为基于超临界CO2流体的功能性纺织品开发。

Release curve of nicotinamide from viscose fabrics and its model fitting

ZHU Weiwei1,2, LONG Jiajie1,2, SHI Meiwu1,2,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Scientific Research Base for Waterless Coloration with Supercritical Fluid (China Textile Engineering Society), Suzhou, Jiangsu 215123, China
    3. Beijing Haidian No. 57 Retired Cadres Rest House, Beijing 100035, China
  • Received:2021-09-28 Revised:2022-10-22 Published:2023-03-15 Online:2023-04-14

摘要:

为将新兴的绿色、高效的超临界CO2流体整理技术用于生物活性纺织品开发,提高服用类织物附加值,以生物活性药物烟酰胺为模型药物,粘胶织物为基材,利用超临界CO2流体分别在不同温度、压力条件下制备负载有烟酰胺的生物活性粘胶织物,将其置于释放介质中,考察烟酰胺从粘胶织物中释放行为的影响因素。结果表明:烟酰胺从粘胶织物中的绝对释放量及绝对释放速率与其在粘胶织物上的负载量正相关;低流体温度(60 ℃)以及高流体压力(20 MPa)下制备的生物活性粘胶织物累积释放百分比及累积释放速率更低,释放平衡时分别接近87.6%、87.3%;烟酰胺从粘胶织物中的释放行为符合Korsmeyer-Peppas模型,其扩散以菲克扩散为主。

关键词: 超临界CO2流体, 烟酰胺, 粘胶织物, 绝对释放量, 绝对释放速率, 生物活性纺织品, 释放行为

Abstract:

Objective Supercritical carbon dioxide fluid (SCF-CO2) is a new green processing and high-efficiency finishing technology, nontoxic, nonflammable and can be recycled, which have been used to impregnate the drug into polymer matrix in biomedical field widely and is superior to the traditional finishing technology. In order to fabricate bioactive textile with good bioactive drug release property through SCF-CO2impregnation processfor increasing the added value of clothing fabrics, it is necessary to analysis the variation and influence factors of release property of drug from bioactive textile fabricated by SCF-CO2.

Method The bioactive drug nicotinamide with skin whitening, nourishing was used as the model drug, and viscose fabric was used as the substrate. Nicotinamide-loaded bioactive viscose fabrics processed by SCF-CO2 under different temperatures (60, 70 and 80 ℃) and different pressures(12, 16 and 20 MPa), which were placed in the same release medium and measured the drug release amount in specific time by ultraviolet spectrophotometer. Ethanol was regarded as the release medium. Finally, the release curves that the drug release amount varied with time were drawn. The drug loading capacity was also measured. Besides, the release curves were fitted by different release models.

Results A higher absolute release quantity and a higher absolute release rate are obtained respectively when the supercritical CO2(SCCO2)temperature is 80 ℃, compared to 60, 70 ℃ of SCCO2 temperature. Besides, the drug loading capacity increases with increasing SCCO2temperature and the values are 6.165 4, 6.617 2 and 8.936 7 mg/g per weight of raw viscose fabric respectively. A higher absolute release quantity and a higher absolute release rate are also obtained respectively when the pressures are above 16 MPa as illustrated, compared to 12 MPa of SCCO2 pressure. The drug loading capacity also increases with increasing pressure and the values are 0.838 7, 4.955 3 and 6.617 2 mg/g per weight of raw viscose fabric respectively. A lower cumulative release percentage and a lower cumulative release rate are obtained respectively when the SCCO2 temperature is 60 ℃, which have an increasing tendency with increasing SCCO2 temperature, and the cumulative release percentage can be as low as 87.6% when it reaches the releasing equilibrium. On the contrary, a lower cumulative release percentage and a lower cumulative release rate are obtained respectively when the SCCO2 pressure is 20 MPa, which have a decreasing tendency with increasing SCCO2 pressure, and the cumulative release percentage can be as low as 87.3% when it reaches the releasing equilibrium. The R2 of Korsmeyer-Peppas model for all the release curves of nicotinamide-loaded viscose fabric processed by different SCCO2 temperature, pressure is much higher than Zero-order release model, Higuchi model, and the R2is above 0.935 39 as depicted in Tab.1 and 2. Moreover, the corresponding diffusion index is generally below 0.45 except that the one processed under 60 ℃ of SCCO2 temperature.

Conclusion The absolute release quantity and release rate of nicotinamide from viscose fabric are positively related to its loading capacity on the viscose fabric that vary with different SCCO2 temperature and pressure. A higher loading capacity results in a higher absolute release quantity and a higher release rate. A lower cumulative release percentage and a lower cumulative release rate can be obtained when nicotinamide-loaded bioactive viscose fabric is processed by a lower SCCO2 temperature or a higher SCCO2 pressure. It means the cumulative release property is correlated to the density of SCCO2. The release kinetics of nicotinamide-loaded viscose fabric processed by SCCO2 are more consistent with Korsmeyer-Peppas model. Moreover, the diffusion behavior of nicotinamide from viscose fabric is mainly belong to Fick diffusion.

Key words: supercritical carbon dioxide fluid, nicotinamide, viscose fabric, absolute release quantity, absolute release rate, bioactive textile, elease behavior

中图分类号: 

  • TS195

图1

不同流体温度载药粘胶织物的释放曲线"

图2

不同流体压力载药粘胶织物的释放曲线"

表1

不同流体温度制备的生物活性粘胶织物各模型拟合参数"

流体温度/℃ 模型 模型方程 R2
60 零级释放模型 Q t = ( 0.39114 t + 23.59073)×100% 0.783 56
Higuchi模型 Q t = ( 6.75903 t 0.5 + 1.45776)×100% 0.931 29
Korsmeyer-Peppas模型 Q t = ( 8.51122 t 0.45586)×100% 0.935 35
70 零级释放模型 Q t = ( 0.26811 t + 46.5634)×100% 0.503 19
Higuchi模型 Q t = ( 5.18487 t 0.5 + 27.03036)×100% 0.781 75
Korsmeyer-Peppas模型 Q t = ( 32.57524 t 0.19643)×100% 0.984 88
80 零级释放模型 Q t = ( 0.33163 t + 43.64796)×100% 0.571 20
Higuchi模型 Q t = ( 6.25345 t 0.5 + 20.75018)×100% 0.832 89
Korsmeyer-Peppas模型 Q t = ( 24.95905 t 0.2661)×100% 0.943 07

图3

不同流体温度制备的生物活性粘胶织物释放拟合曲线"

图4

不同流体压力制备的生物活性粘胶织物释放拟合曲线"

表2

不同流体压力制备的生物活性粘胶织物各模型拟合参数"

流体压力/MPa 模型 方程 R2
12 零级释放模型 Q t = ( 0.21058 t + 66.23545)×100% 0.229 07
Higuchi模型 Q t = ( 4.54857 t 0.5 + 47.12954)×100% 0.500 12
Korsmeyer-Peppas模型 Q t = ( 66.15522 t 0.07598)×100% 0.998 41
16 零级释放模型 Q t = ( 0.2616 t + 52.81256)×100% 0.433 72
Higuchi模型 Q t = ( 5.18591 t 0.5 + 32.75056)×100% 0.719 83
Korsmeyer-Peppas模型 Q t = ( 40.57053 t 0.16384)×100% 0.988 30
20 零级释放模型 Q t = ( 0.26811 t + 46.5634)×100% 0.503 19
Higuchi模型 Q t = ( 5.18487 t 0.5 + 27.03036)×100% 0.781 75
Korsmeyer-Peppas模型 Q t = ( 32.57524 t 0.19643)×100% 0.984 88
[1] 尤晓敏. 溶胶-凝胶法的棉织物维生素E整理[D]. 上海: 东华大学, 2008: 4.
YOU Xiaomin. Finishing of cotton fabric with vitamin E by sol-gel method[D]. Shanghai: Donghua University, 2008: 4.
[2] 魏洋, 王革辉. 芦荟护肤机制及其护肤内衣开发[J]. 针织工业, 2012(2): 46-48.
WEI Yang, WANG Gehui. Aloe skin care mechanism and the development of skin care underwear[J]. Knitting Industries, 2012(2): 46-48.
[3] 孙梦尧. 面膜用高吸湿、抗菌、护肤粘胶纤维的制备及性能研究[D]. 青岛: 青岛大学, 2017: 27-28.
SUN Mengyao. Research on the preparation and properties of high hygroscopicity, antibacterial and skin care viscose fiber for facial mask[D]. Qingdao: Qingdao University, 2017: 27-28.
[4] DHINESHBABU N R, ARUNMETHA S, MANIVASAKAN P, et al. Enhanced functional properties of cotton fabrics using TiO2/SiO2 nanocomposites[J]. Journal of Industrial Textiles, 2016, 45(5): 674-692.
doi: 10.1177/1528083714538684
[5] BITAR A, ZAFAR N, VALOUR J P, et al. Elaboration of sponge-like particles for textile functionalization and skin penetration[J]. Colloid and Polymer Science, 2015, 293(10): 2967-2977.
doi: 10.1007/s00396-015-3704-7
[6] 朱维维, 王红星, 龙家杰, 等. 一种基于超临界CO2流体技术使纤维素纤维具有抗炎功能的加工方法:201810588511.8[P]. 2018-12-21.
ZHU Weiwei, WANG Hongxing, LONG Jiajie, et al. A method for processing cellulose fiber with anti-inflammatory function based on supercritical CO2 fluid technology: 201810588511.8[P]. 2018-12-21.
[7] 朱维维, 王红星, 龙家杰, 等. 一种基于超临界CO2流体技术使纤维素纤维具有抗皱功能的加工方法:201810588894.9[P]. 2018-12-18.
ZHU Weiwei, WANG Hongxing, LONG Jiajie, et al. A method for processing cellulose fiber with anti-wrinkle function based on supercritical CO2 fluid technology:201810588894.9[P]. 2018-12-18.
[8] ZHU W W, FAN Y, ZHANG C, et al. Impregnation of viscose substrate with nicotinamide in supercritical carbon dioxide[J]. Textile Research Journal, 2019, 89(17): 3475-3483.
doi: 10.1177/0040517518813683
[9] ZHU W W, SHI W, SHI M W, et al. Solubility and loading ability of benzene derivative drugs onto viscose substrate in supercritical carbon dioxide and their release behavior in solvent[J]. Journal of Cleaner Production, 2020.DOI: 10.1016/j.jclepro.2020.120200.
doi: 10.1016/j.jclepro.2020.120200
[10] CHAMPEAU M, THOMASSIN J M, TASSAING T, et al. Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2015, 209: 248-259.
doi: 10.1016/j.jconrel.2015.05.002
[11] KAZARIAN S G, BRANTLEY N H, WEST B L, et al. In situ spectroscopy of polymers subjected to supercritical CO2: plasticization and dye impregnation[J]. Applied Spectroscopy, 1997, 51(4): 491-494.
doi: 10.1366/0003702971940765
[12] 张雯. 基于胶原蛋白/细菌纤维素多孔微球的制备及药物吸附释放行为研究[D]. 西安: 陕西科技大学, 2019: 103.
ZHANG Wen. Preparation of porous microspheres based on collagen/bacterial cellulose and its drug adsorption/release behavior[D]. Xi'an: Shaanxi University of Science and Technology, 2019: 103.
[13] JAIN A, JAIN S K. In vitro release kinetics model fitting of liposomes: an insight[J]. Chemistry and Physics of Lipids, 2016, 201: 28-40.
doi: 10.1016/j.chemphyslip.2016.10.005
[14] MAIANA A D S, ANDRÉA C K B, THEO G K. Modelling natamycin release from alginate/chitosan active films[J]. International Journal of Food Science & Technology, 2012, 47(4): 740-746.
[15] REDL A, GONTARD N, GUILBERT S. Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films[J]. Journal of Food Science, 1996, 61(1) : 116-120.
doi: 10.1111/jfds.1996.61.issue-1
[1] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[2] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[3] 朱维维, 管丽媛, 龙家杰, 施楣梧. 超临界CO2流体处理时间对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2021, 42(12): 97-102.
[4] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[5] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[6] 王成 张峰 姚理荣 陈宇岳. 载银粘胶色纺面料的制备及其抗菌性能[J]. 纺织学报, 2014, 35(1): 91-0.
[7] 季涛, 李杰, 高强, 余进, 刘其霞. 粘胶基炭化织物的制备及工艺优化[J]. 纺织学报, 2012, 33(4): 49-54.
[8] 杨文芳;王雷. 超临界CO2在PLA纤维染色中的应用[J]. 纺织学报, 2007, 28(10): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!