纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 176-186.doi: 10.13475/j.fzxb.20211106611
刘军平1,2,3, 张伏红1, 胡新荣1,2,3(), 彭涛1,2,3, 李丽1,2,3, 朱强1,2,3, 张俊杰1,2,3
LIU Junping1,2,3, ZHANG Fuhong1, HU Xinrong1,2,3(), PENG Tao1,2,3, LI Li1,2,3, ZHU Qiang1,2,3, ZHANG Junjie1,2,3
摘要:
为提高服装的匹配度且实现高精度推荐,从而满足消费者对个性化服装搭配推荐的巨大需求,研究了从服装颜色到类别的高度非线性复杂属性交互,并以服装搭配的匹配度量化标准为基础,构建了单品潜在特征表示空间的嵌入模型,通过构建融合多模态信息的矩阵分解框架模型,进一步分析了现有多模态特征融合算法的不足,刻画了不同用户的服装风格偏好,通过特征提取、多模态特征融合、匹配度计算等手段建立个性化服装搭配方案。实验结果表明:该模型计算出的服装匹配度达到了0.81,相较于传统方法提高了1.25%,实现了更高准确度和推荐精度的个性化服装推荐。
中图分类号:
[1] | AMED I, BALCHANDANI A, BERG A, et al. The state of fashion 2022: global gains mask recovery pains[EB/OL]. [2022-10-01]. https://www.mckinsey.com/industries/retail/our-insights/the-state-of-fashion. |
[2] | 朱伟明, 卫杨红. 不同情景下服装个性化定制体验价值差异研究[J]. 纺织学报, 2018, 39(10): 115-119. |
ZHU Weming, WEI Yanghong. Experiential value differences of clothing personalized customization under different situations[J]. Journal of Textile Research, 2018, 39(10): 115-119. | |
[3] | CHEN Huiyuan, LIN Yusan, WANG Fei, et al. Tops, bottoms, and shoes: building capsule wardrobes via cross-attention tensor network[C]// Fifteenth ACM Conference on Recommender Systems. New York: Association for Computing Machinery, 2021: 453-462. |
[4] | DONG Xue, SONG Xuemeng, FENG Fuli, et al. Personalized capsule wardrobe creation with garment and user modeling[C]// In Proceedings of the 27th ACM International Conference on Multimedia (MM'19). New York:Association for Computing Machinery, 2019: 302-310. |
[5] | CHEN Wen, HUANG Pipei, XU Jiaming, et al. POG: Personalized outfit generation for fashion recommendation at alibaba ifashion[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'19). New York, USA: ACM Press, 2019: 2662-2670. |
[6] | LIN Yusan, MOOSAEI M, YANG Hao. Outfitnet: fashion outfit recommendation with attention-based multiple instance learning[C]// Proceedings of The Web Conference 2020. New York, USA: ACM Press, 2015: 77-87. |
[7] | VASILEVA M I, PLUMMER B A, DUSAD K, et al. Learning type-aware embeddings for fashion compatibility[C]// Proceedings of the European Conference on Computer Vision. Berli, Germany: Springer, 2018: 390-405. |
[8] |
CHEN Xu, ZHANG Yongfeng, XU Hongteng, et al. Visually explainable recommendation[J]. Computer Science, 2018. DOI: 10.48550/arXiv.1801.10288.
doi: 10.48550/arXiv.1801.10288 |
[9] | HIDAYATI S C, HSU C C, CHANG Y T, et al. What dress fits me best?: fashion recommendation on the clothing style for personal body shape[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York, USA: ACM Press, 2018: 438-446. |
[10] | 杨争妍, 薛文良, 张传雄, 等. 基于生成式对抗网络的用户下衣搭配推荐[J]. 纺织学报, 2021, 42(7): 164-168. |
YANG Zhengyan, XUE Wenliang, ZHANG Chuanxiong, et al. Recommendations for user's bottoms matching based on generative adversarial networks[J]. Journal of Textile Research, 2021, 42(7): 164-168. | |
[11] | MCAULEY J, TARGETT C, SHI Q, et al. Image-based recommendations on styles and substitutes[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2015: 43-52. |
[12] | VEIT A, KOVACS B, BELl S, et al. Learning visual clothing style with heterogeneous dyadic co-occurrences[C]// Proceedings of the IEEE International Conference on Computer Vision. Berli, Germany: Springer, 2015: 4642-4650. |
[13] | CHEN Long, HE Yuhang. Dress fashionably: learn fashion collocation with deep mixed-category metric learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2103-2110. |
[14] | HE R, PACKER C, MCAULEY J. Learning compatibility across categories for heterogeneous item recommendation[C]// 2016 IEEE 16th International Conference on Data Mining. Barcelona, Spain:IEEE, 2017: 937-942. |
[15] | SHIH Y S, CHANG K Y, LIN H T, et al. Compatibility family learning for item recommendation and generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2403-2410. |
[16] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway, NJ: IEEE, 2018: 834-848. |
[17] | WANG Zheng, BAI Xiang, YE Mang, et al. Incremental deep hidden attribute learning[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York, USA: ACM Press, 2018: 72-80. |
[18] | 刘华玲, 马俊, 张国祥. 基于深度学习的内容推荐算法研究综述[J]. 计算机工程, 2021, 47(7): 1-12. |
LIU Hualing, MA Jun, ZHANG Guoxiang. Review of studies on deep learning-based content recommendation algorithms[J]. Computer Engineering, 2021, 47(7): 1-12.
doi: 10.1063/1.31437 |
|
[19] | HE R, LIN C, WANG J, et al. Sherlock: sparse hierarchical embeddings for visually-aware one-class collaborative filtering[C]// In International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 3740-3746. |
[20] | 张艺豪, 李梁, 赵清华, 等. 基于全局相似度的社交网络个性化推荐算法[J]. 计算机工程, 2018, 44(10): 204-208. |
ZHANG Yihao, LI Liang, ZHAO Qinghua, et al. Personalized recommendation algorithm of social network based on global similarity[J]. Computer Engineering, 2018, 44(10): 204-208. | |
[21] | BRILL M, ELKIND E, ENDRISS U, et al. Pairwise diffusion of preference rankings in social networks[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 130-136. |
[22] | 张卓, 丛洪莲, 蒋高明, 等. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(1): 138-144. |
ZHANG Zhuo, CONG Honglian, JIANG Gaoming, et al. Polo shirt rapid style recommendation system based on interactive genetic algorithm[J]. Journal of Textile Research, 2021, 42(1): 138-144. | |
[23] | 甘美辰, 李敏. 女装搭配推荐系统的设计与实现[J]. 纺织学报, 2020, 41(10): 122-131. |
GAN Meichen, LI Min. Design and realization of a collocation recommendation system for women's clothing[J]. Journal of Textile Research, 2020, 41(10): 122-131. | |
[24] | HE Xiangnan, ZHANG Hanwang, KAN Min-Yen, et al. Fast matrix factorization for online recommendation with implicit feedback[C]// Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2016: 549-558. |
[25] | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. |
[26] | WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2019: 165-174. |
[27] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: bayesian personalized ranking from implicit feedback[C]// Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. Virginia, USA: AUAI Press, 2009: 452-461. |
[28] | HE R, MCAULEY J. VBPR: visual bayesian personalized ranking from implicit feedback[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 144-150. |
[29] | YU Wenhui, ZHANG Huidi, HE Xiangnan, et al. Aesthetic-based clothing recommendation[C]// Proceedings of the 2018 World Wide Web Conference. Lyon, France:IW3C2, 2018: 649-658. |
[30] | SONG Xuemeng, FENG Fuli, LIU Jinhuan, et al. Neurostylist: neural compatibility modeling for clothing matching[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York, USA: ACM Press, 2017: 753-761. |
[31] | 贾俊杰, 刘鹏涛, 陈旺虎. 融合社交信息的矩阵分解改进推荐算法[J]. 计算机工程, 2021, 47(9): 97-105. |
JIA Junjie, LIU Pengtao, CHEN Wanghu. Improved matrix factorization algorithm using social information for recommendation[J]. Computer Engineering, 2021, 47(9): 97-105. | |
[32] | HU Yifan, KOREN Yehuda, VOLINSKY Chris. Collaborative filtering for implicit feedback data-sets[C]// Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. New York, USA: IEEE Computer Society, 2008: 263-272. |
[33] | PAN Rong, ZHOU Yunhong, CAO Bin, et al. One-class collaborative filtering[C]// Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. New York, USA: IEEE Computer Society, 2008: 502-511. |
[34] |
REN Shaoqing, HE Kaiming, GIRSHICK Ross. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031 |
[35] | 孙洁, 丁笑君, 杜磊, 等. 基于卷积神经网络的织物图像特征提取与检索研究进展[J]. 纺织学报, 2019, 40(12): 146-151. |
SUN Jie, DING Xiaojun, DU Lei, et al. Research progress of fabric image feature extraction and retrieval based on convolutional neural network[J]. Journal of Textile Research, 2019, 40(12): 146-151. | |
[36] | 王柳程, 欧阳城添, 梁文. 基于改进特征金字塔网络的人体姿态估计[J]. 计算机工程, 2021, 47(8): 251-259,270. |
WANG Liucheng, OUYANG Chengtian, LIANG Wen. Human pose estimation based on improved pyramid feature network[J]. Computer Engineering, 2021, 47(8): 251-259,270. | |
[37] | 音松, 陈雪云, 贝学宇. 改进Mask RCNN算法及其在行人实例分割中的应用[J]. 计算机工程, 2021, 47(6): 271-276,283. |
YIN Song, CHEN Xueyun, BEI Xueyu. Improved mask rcnn algorithm and its application in pedestrian instance segmentation[J]. Computer Engineering, 2021, 47(6): 271-276,283.
doi: 10.1063/1.31441 |
|
[38] | LIN T, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 936-944. |
[39] |
KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014. DOI: 10.48550/arXiv.1408.5882.
doi: 10.48550/arXiv.1408.5882 |
[40] | 喻靖民, 向凌云, 曾道建. 基于Word2vec的自然语言隐写分析方法[J]. 计算机工程, 2019, 45(3): 309-314. |
YU Jingmin, XIANG Lingyun, ZENG Daojian. Natural language steganalysis method based on Word2vec[J]. Computer Engineering, 2019, 45(3): 309-314. | |
[41] | HU Zhiting, MA Xuezhe, LIU Zhengzhong. Harnessing deep neural networks with logic rules[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 2410-2420. |
[42] | SEVERYN A, MOSCHITTI A. Twitter sentiment analysis with deep convolutional neural networks[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2015: 959-962. |
[43] | ASAHARA M. NWJC2Vec: word embedding dataset from 'ninjal web japanese corpus'[J]. Terminology, 2018, 24(1): 7-22. |
[44] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. Computer Science, 2014. DOI: 10.48550/arxiv.1412.6980.
doi: 10.48550/arxiv.1412.6980 |
[45] |
BRADLEY P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern Recognition, 1997, 30(7): 1145-1159.
doi: 10.1016/S0031-3203(96)00142-2 |
[46] | SONG Xuemeng, HAN Xianjing, LI Yunkai, et al. GP-BPR: personalized compatibility modeling for clothing matching[C]// Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 320-328. |
[47] | HAN Xintong, WU Zuxuan, JIANG Yugang, et al. Learning fashion compatibility with bidirectional LSTMs[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York, USA: ACM Press, 2017: 1078-1086. |
[48] | HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, CHE:IW3C2, 2017: 173-182. |
[49] | JIANG Lu, YU S I, MENG Deyu, et al. Fast and accurate content-based semantic search in 100m internet videos[C]// Proceedings of the 23rd ACM International Conference on Multimedia. New York, USA: ACM Press, 2015: 49-58. |
[50] |
YIN Hongzhi, CHEN Hongxu, SUN Xiaoshuai, et al. SPTF: a scalable probabilistic tensor factorization model for semantic-aware behavior prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1763-1777.
doi: 10.1109/TKDE.2013.168 |
[1] | 马传旭, 张宁, 潘如如. 基于支持向量机的筒子纱纱管品种检测[J]. 纺织学报, 2023, 44(01): 194-200. |
[2] | 马玲, 吕叶馨, 刘驰, 陈佳珍, 邹奉元. 基于服装属性的女装搭配规则构建[J]. 纺织学报, 2022, 43(08): 161-166. |
[3] | 杨争妍, 薛文良, 张传雄, 丁亦, 马颜雪. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(07): 164-168. |
[4] | 徐增波, 张玲, 张艳红, 陈桂清. 基于复杂网络提取和支持向量机模型分类的服装领型研究[J]. 纺织学报, 2021, 42(06): 146-152. |
[5] | 郑晓萍, 刘成霞. 基于激光测量的机织服装起拱性客观评价[J]. 纺织学报, 2021, 42(05): 143-149. |
[6] | 甘美辰, 李敏. 女装搭配推荐系统的设计与实现[J]. 纺织学报, 2020, 41(10): 122-131. |
[7] | 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(06): 125-131. |
[8] | 汪会, 孙洁, 丁笑君, 龙颖, 邹奉元. 织物纹样特征提取与匹配方法比较[J]. 纺织学报, 2020, 41(04): 45-50. |
[9] | 孙洁, 丁笑君, 杜磊, 李秦曼, 邹奉元. 基于卷积神经网络的织物图像特征提取与检索研究进展[J]. 纺织学报, 2019, 40(12): 146-151. |
[10] | 朱浩, 丁辉, 尚媛园, 邵珠宏. 多纹理分级融合的织物缺陷检测算法[J]. 纺织学报, 2019, 40(06): 117-124. |
[11] | 邢文宇, 邓娜, 辛斌杰, 于晨. 基于多特征融合图像分析技术的羊毛与羊绒鉴别[J]. 纺织学报, 2019, 40(03): 146-152. |
[12] | 赵树志 狄岚 何锐波. 基于改进判别性完整局部二值模式与格分割的织物瑕疵检测方法[J]. 纺织学报, 2018, 39(09): 57-64. |
[13] | 董蓉 李勃 徐晨. 应用积分图的织物瑕疵检测快速算法[J]. 纺织学报, 2016, 37(11): 141-147. |
[14] | 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲. 蕾丝花边的改进型纹理特征检索方法[J]. 纺织学报, 2016, 37(06): 142-154. |
[15] | 黎聪 闫学娜 曾祥忠 梁猛 张莹. 应用一维傅里叶变换的剖幅区自动识别与定位[J]. 纺织学报, 2016, 37(01): 147-151. |
|