纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 201-209.doi: 10.13475/j.fzxb.20210700509

• 综合述评 • 上一篇    下一篇

静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展

何满堂1, 王黎明1(), 覃小红1, 俞建勇2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2021-07-01 修回日期:2022-03-18 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 王黎明(1988—),男,研究员,博士。主要研究方向为静电纺纳米纤维的可控制备及应用。E-mail:wangliming@dhu.edu.cn
  • 作者简介:何满堂(1991—),男,博士生。主要研究方向为光热转换功能纤维。
  • 基金资助:
    国家自然科学基金项目(51973027);国家自然科学基金项目(52003044);中央高校基本科研业务费专项资金、东华大学研究生创新基金项目(CUSF-DH-D-2022039)

Research progress in electrospun nanofibers in interfacial solar steam generation

HE Mantang1, WANG Liming1(), QIN Xiaohong1, YU Jianyong2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2021-07-01 Revised:2022-03-18 Published:2023-03-15 Online:2023-04-14

摘要:

静电纺纳米纤维因其具有高比表面积、孔隙结构可控等优点而被用作界面太阳能蒸汽发生器基底,然而由于其力学性能不足、与光热材料的结合力差等限制了其长足发展。为此,介绍了静电纺纳米纤维的特点及其与光热材料结合的主要方式,包括表面修饰、共混纺丝、Janus纳米纤维膜以及三维纳米纤维气凝胶,对其原理、性能和工艺方法等进行系统性概述;并在此基础上展望了该研究领域的未来发展趋势,以探索静电纺纳米纤维在光热能源领域中广泛应用的方法。研究认为,加强静电纺纳米纤维与光热材料结合力并赋予其抗菌、自清洁等多功能性,是提高太阳能蒸汽发生器持久使用的一大方法,探寻简易的制备方法和开发低成本材料高性能太阳能蒸汽发生器是未来的发展重点。

关键词: 静电纺纳米纤维, 太阳能蒸汽发生器, 纳米纤维膜, 纤维基气凝胶, 海水淡化, 污水净化, 多功能材料

Abstract:

Significance Solar steam generation is a method to generate steam from solar energy to obtain clean water resources which can convert solar energy into heat energy and solve the problem of clean water shortage with minimal environmental impact. Electrospun nanofibers have been used as the substrate of interfacial solar steam generator by means of its structural features. Electrospinning can provide nanofibers with high specific surface area to enhance the evaporation process, continuous fibers can transport water over long distances, which can ensure adequate water supply, and the porosity and pore structure of the film can be adjusted to achieve higher vapor diffusion by adjusting the parameters of the electrostatic spinning device. Moreover, many reports confirmed that the electrospun nanofiber-based evaporator can achieve seawater desalination, wastewater purification and other purposes by using interfacial solar steam generation.

Progress In this paper, four main ways of combining electrospun nanofibers with photothermal materials in two-dimensional nanofiber membrane and three-dimensional nanofiber aerogel evaporator were introduced, with their principles, properties and process methods systematically summarized. The performance of different types of solar evaporators using electrospun nanofiber-based was compared and discussed. It is showed that these evaporators can achieve a maximum evaporation rate of 3.81 kg/(m2·h) with a conversion efficiency of 90.1% and salt resistance of 99% under one sun irradiation. The conventional methods of two-dimensional surface modified electrospun nanofiber membrane, the principles of two-dimensional blending electrospun nanofiber membrane, two-dimensional Janus electrospun nanofiber membrane and three-dimensional electrospun nanofiber aerogel were scutinized. The surface modification of electrospun nanofiber membrane leads to many functional materials, such as loading conductive materials for sensors, spraying antibacterial agents for antibacterial properties, depositing photothermal materials to make solar steam generators. Surface modification is mainly divided into physical methods and chemical methods. Electrospun nanofiber membrane is prepared by mixing polymer and photothermal materials into uniform spinning solution through electrospinning. The preparation of Janus electrospun nanofiber membranes is generally carried out by surface modification on the upper and lower sides of the nanofiber membranes or by step spinning on different spinning fluids, so as to achieve the effect of different characteristics on both sides of the nanofiber membranes. Electrospun nanofiber-based aerogel is prepared by freeze-drying of nanofibers, photothermal materials and crosslinking agents in the nanofiber membrane. The three-dimensional aerogel prepared by nanofiber offers larger volume and higher specific surface area, which not only can improve the binding strength between nano-fiber and photothermal materials, but also fully improve the evaporation rate and salt resistance of solar evaporator.

Conclusions and Prospect The electrospun nanofiber-based solar steam generator makes use of the characteristics of electrospun nanofibers, enriches the combination of nanofibers and photothermal materials, and effectively expands the application of nanofibers in the field of photothermal energy. However, there are still some challenges, such as low strength, poor adhesion with photothermal materials and insufficient function, which limit the development of electrospun nanofibers in the application of solar steam generation. Practical application process of solar steam generator often faces issues such as complex water environment (such as seawater, acid and alkali wastewater) where strengthened adhesion between electrospun nanofibers and photothermal materials is necessary to impart multi-functions such as bacterial resisting and self-cleaning. The thickness of two-dimensional planar solar evaporator directly constructed by electrospun nanofiber membrane is small which makes the thermal management, and hence water supply and vapor diffusion in the process of water evaporation cannot be carried out faster. In order to solve this problem, solar steam generators need to focus on constructing two-dimensional nanofiber membranes into three-dimensional structures, optimize the structure design, and make full use of solar energy to improve the ability of photothermal steam conversion. In addition, photothermal materials and nanofibers still have problems such as high production cost and long technological process at present. It is believed that developing simple preparation methods and low-cost materials for high-performance solar steam generators represent a key perspective in future development.

Key words: electrospun nanofiber, solar steam generation, nanofiber membrane, nanofiber-based aerogel, seawater desalination, wastewater purification, multifunction material

中图分类号: 

  • TS104.76

图1

静电纺纳米纤维的特点及其在界面蒸汽转化中的应用分类"

表1

太阳能蒸汽发生器性能对比"

太阳能蒸发器
构成(聚合物/
光热材料)
光吸
收率/
%
蒸发速率/
(kg·(m2·h)-1)
转化
效率/
%
脱盐
率/%
参考
文献
聚乳酸/氧化钨 3.81 81 [17]
聚酰胺/炭黑 94 1.24 83 [26]
聚偏氟乙烯/碳纳米管 90 1.43 60 99.9 [27]
甲基丙烯酸乙酯/石墨烯 92 1.25 82 [28]
聚偏氟乙烯+聚丙烯腈/炭黑 98.6 1.2 82 [29]
聚甲基丙烯酸甲酯/炭黑 97 1.3 72 [30]
聚偏氟乙烯/碳球 96 1.29 73 99 [31]
聚偏氟乙烯/金纳米颗粒 3.64 79.8 [32]
聚氨酯/碳纳米管+聚多巴胺 94 1.44 90.1 [33]
聚偏氟乙烯+聚丙烯腈/氧化锡 0.93 60 [34]

图2

表面修饰静电纺纳米纤维膜常用方法"

图3

共混纺丝静电纺纳米纤维膜原理"

图4

Janus静电纺纳米纤维膜制备方法"

图5

静电纺纳米纤维气凝胶制备方法"

[1] 杨宇笛, 徐壁, 蔡再生. 基于染色斜纹棉布的太阳能驱动界面水蒸发体系的研究[J]. 产业用纺织品, 2020, 38 (3): 29-35.
YANG Yudi, XU Bi, CAI Zaisheng. Study on solar driven interfacial water evaporation system based on dyed twill cotton fabric[J]. Technical Textiles, 2020, 38 (3): 29-35.
[2] YAO H, ZHANG P, HUANG Y, et al. Highly efficient clean water production from contaminated air with a wide humidity range[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201905875.
doi: 10.1002/adma.201905875
[3] 常宇虹. 纳米过渡金属氧族化合物的太阳能光热蒸汽转化研究[D]. 济南: 山东大学, 2019: 1-94.
CHANG Yuhong. Study on solar photothermal steam con version of nanosized transition metal oxides[D]. Ji'nan: Shandong University, 2019: 1-94.
[4] 高婷婷. 碳基复合材料的制备及其能源存储与光热转化性能的研究[D]. 上海: 东华大学, 2019: 5-6.
GAO Tingting. Preparation of carbon matrix composites and their energy storage and photothermal conversion properties[D]. Shanghai: Donghua University, 2019: 5-6.
[5] WEI Z, CAI C, HUANG Y, et al. Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106138.
doi: 10.1016/j.nanoen.2021.106138
[6] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42 (12): 166-173.
[7] LIU X, TIAN Y, CHEN F, et al. An easy-to-fabricate 2.5D evaporator for efficient solar desalination[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100911.
doi: 10.1002/adfm.202100911
[8] XU X, OZDEN S, BIZMARK N, et al. A bioinspired elastic hydrogel for solar-driven water purification[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202007833.
doi: 10.1002/adma.202007833
[9] CHEN C, LI Y, SONG J, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201701756.
doi: 10.1002/adma.201701756
[10] LEE J, KIM K, PARK S H, et al. Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105130.
doi: 10.1016/j.nanoen.2020.105130
[11] 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121.
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121.
[12] HE M, DAI H, LIU H, et al. High-performance solar steam generator based on polypyrrole-coated fabric via 3D macro-and microstructure design[J]. ACS Appl Mater Interfaces, 2021, 13(34): 40664-40672.
doi: 10.1021/acsami.1c11802
[13] HE M, ALAM M K, LIU H, et al. Textile waste derived cellulose based composite aerogel for efficient solar steam generation[J]. Composites Communications, 2021. DOI: 10.1016/j.coco.2021.100936.
doi: 10.1016/j.coco.2021.100936
[14] LIU Y, LIU H, XIONG J, et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.131539.
doi: 10.1016/j.cej.2021.131539
[15] LIU H, ALAM M K, HE M, et al. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49860-49867.
doi: 10.1021/acsami.1c13362
[16] GUO X, GAO H, WANG S, et al. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114535.
doi: 10.1016/j.desal.2020.114535
[17] CHALA T F, WU C M, CHOU M H, et al. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28955-28962.
[18] LIU Y, XIONG J, LI A, et al. Plasmonic silver nanoparticle-decorated electrospun nanofiber membrane for interfacial solar vapor generation[J]. Textile Research Journal, 2021. DOI: 10.1177/00405175211014966.
doi: 10.1177/00405175211014966
[19] WU X, WU Z, WANG Y, et al. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator[J]. Advanced Science, 2021. DOI: 10.1002/advs.202002501.
doi: 10.1002/advs.202002501
[20] LEI W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evapora-tion[J]. Nano Research, 2020, 14(4): 1135-1140.
doi: 10.1007/s12274-020-3162-5
[21] LI L, ZANG L, ZHANG S, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191-197.
doi: 10.1016/j.jtice.2020.03.015
[22] ZHOU Q, LI H, LI D, et al. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J]. J Colloid Interface Science, 2021, 592: 77-86.
doi: 10.1016/j.jcis.2021.02.045
[23] WU D, LIANG J, ZHANG D, et al. Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carboni-zation[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2020.110591.
doi: 10.1016/j.solmat.2020.110591
[24] IRSHAD M S, ARSHAD N, WANG X. Nanoenabled photothermal materials for clean water production[J]. Global Challenges, 2020. DOI: 10.1002/gch2.202000055.
doi: 10.1002/gch2.202000055
[25] QI Q, WANG W, WANG Y, et al. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.116595.
doi: 10.1016/j.seppur.2020.116595
[26] JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7942-7949.
doi: 10.1039/C8TA00187A
[27] HUANG J, HU Y, BAI Y, et al. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114529.
doi: 10.1016/j.desal.2020.114529
[28] LI D, ZHANG X, ZHANG S, et al. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128916.
doi: 10.1016/j.chemosphere.2020.128916
[29] GAO T, LI Y, CHEN C, et al. Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement[J]. Small Methods, 2019. DOI: 10.1002/smtd.201800176.
doi: 10.1002/smtd.201800176
[30] XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018. DOI: 10.1002/aenm.201702884.
doi: 10.1002/aenm.201702884
[31] LI W, DENG L, HUANG H, et al. Janus photothermal membrane as an energy generator and a mass-transfer accelerator for high-efficiency solar-driven membrane distillation[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26861-26869.
[32] WU T, LI H, XIE M, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12: 129-135.
doi: 10.1016/j.mtener.2018.12.008
[33] HE M T, LIU H J, WANG L M, et al. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation dagger[J]. Materials Chemistry Frontiers, 2021, 5: 3673-3680.
doi: 10.1039/D1QM00101A
[34] ZHAO J, HUANG Q, GAO S, et al. In situ photo-thermal conversion nanofiber membrane consisting of hydrophilic PAN layer and hydrophobic PVDF-ATO layer for improving solar-thermal membrane distil-lation[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.memsci.2021.119500.
doi: 10.1016/j.memsci.2021.119500
[35] XU Y, XU H, ZHU Z, et al. A mechanically durable, sustained corrosion-resistant photothermal nanofiber membrane for highly efficient solar distillation[J]. Journal of Materials Chemistry A, 2019, 7(39): 22296-22306.
doi: 10.1039/C9TA05042F
[36] FAN X, LV B, XU Y, et al. Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation[J]. Solar Energy, 2020, 209: 325-333.
doi: 10.1016/j.solener.2020.09.013
[37] HUANG Q, GAO S, HUANG Y, et al. Study on photothermal PVDF/ATO nanofiber membrane and its membrane distillation performance[J]. Journal of Membrane Science, 2019, 582: 203-210.
doi: 10.1016/j.memsci.2019.04.019
[38] ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014.
[39] LIU H, LIU Y, WANG L, et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation[J]. Carbon, 2021, 177: 199-206.
doi: 10.1016/j.carbon.2021.02.081
[40] ZHAO Q, DU C, JIA Y, et al. Solar-powered Janus membrane for one-step conversion of sewage to clean water[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124131.
doi: 10.1016/j.cej.2020.124131
[41] PENG F, XU J, BAI X, et al. A Janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam generation[J]. Solar Energy Materials and Solar Cells, 2021. DOI: 10.1016/j.solmat.2020.110910.
doi: 10.1016/j.solmat.2020.110910
[42] QIN Z, SUN H, TANG Y, et al. Bioinspired hydrophilic-hydrophobic Janus composites for highly efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19467-19475.
[43] CHEN M, LIN X, ZENG C, et al. Poly (p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125997.
doi: 10.1016/j.colsurfa.2020.125997
[44] DENG X, NIE Q, WU Y, et al. Nitrogen-doped unusually superwetting, thermally insulating, and elastic graphene aerogel for efficient solar steam gener-ation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26200-26212.
[45] MENG X, XU W, LI Z, et al. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purifi-cation[J]. Advanced Fiber Materials, 2020, 2(2): 93-104.
doi: 10.1007/s42765-020-00029-9
[46] LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040.
[47] DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908269.
doi: 10.1002/adma.201908269
[48] MEI T, CHEN J, ZHAO Q, et al. Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42686-42695.
[1] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[2] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[3] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[4] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[5] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[6] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[7] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[8] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[9] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[10] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[11] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[12] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[13] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22.
[14] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[15] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!