纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 221-230.doi: 10.13475/j.fzxb.20210901210

• 综合述评 • 上一篇    下一篇

检测汗液用可穿戴电化学传感器的研究进展

唐丽琴1, 李彦1,2,3(), 毛吉富1,2,3, 汪军1, 王璐1,2,3   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.东华大学 纺织行业生物医用纺织材料与技术重点实验室, 上海 201620
  • 收稿日期:2021-09-06 修回日期:2022-12-21 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 李彦(1987—),女,副教授,博士。主要研究方向为生物医用纺织品。E-mail:yanli@dhu.edu.cn
  • 作者简介:唐丽琴(1997—),女,博士生。主要研究方向生物医用纺织品。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232020G-01);高等学校学科创新引智计划项目(BP0719035)

Research progress in wearable electrochemical sensor for sweat detection

TANG Liqin1, LI Yan1,2,3(), MAO Jifu1,2,3, WANG Jun1, WANG Lu1,2,3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Biomedical Textile Materials and Technology in Textile Industry, Donghua University, Shanghai 201620, China
  • Received:2021-09-06 Revised:2022-12-21 Published:2023-03-15 Online:2023-04-14

摘要:

为探究可穿戴电化学传感器在分析汗液中常见的内源性分析物和外源性分析物方面的应用,首先介绍了汗液和电化学传感器的概念以及汗液传统提取方法和新型提取策略,详细分析了2种汗液提取方式的优势与不足。其次阐述了不同分析物和传感器基材材料的研究及其应用现状。从最基础的汗液收集和储备出发,总结了汗液中各种可能存在物质的电化学传感器的检测意义和构建策略,概述了从刚性可穿戴到柔性可穿戴电子设备的发展,并指出可穿戴电化学传感器在纺织行业中发展存在的问题以及对其在纺织行业中的未来发展方向进行了展望。

关键词: 可穿戴, 汗液, 电化学传感器, 纺织品, 个性化医疗, 柔性电子

Abstract:

Significance Sweat as a typical body fluid for analysis can provide rich biochemical information and is easy to collect. Electrochemical sensors with the advantages such as easy miniaturization, high sensitivity, and low cost stand out from other sensors, and the detection of various body fluids by wearable electrochemical sensors can achieve a non-invasive and non-invasive, simple operation, integrated diagnosis and treatment, and personalized medical process. By reviewing the research of flexible wearable electrochemical sensors in sweat composition analysis and its application status, the integration of wearable electronic devices with textile field is promoted and the future development of smart textile technology is driven. It also drives the huge demand and potential of sweat wearable electrochemical sensors in molecular chemistry, analytical chemistry, medical-military and aerospace fields.

Progress This paper provides an overview of the advances in sweat extraction strategies, different analytes and electrochemical sensor substrate materials, respectively. Among them, sweat extraction strategies have evolved from conventional external stimulation or exercise sweating to microfluidic collection of sweat, even sitting still. For complex analytes in sweat, endogenous analytes are the initial targets for detection, especially glucose, a substance abundant in sweat, its sensors have been evolved from enzymatic to non-enzymatic, addressing the drawback that biological enzymes are easily inactivated. However, with the development of personalized medicine needs, monitoring the metabolic concentration of some oral or injectable clinical drugs in body fluids has become necessary. In addition to drug molecules, sweat detection of some prohibited drugs can also help police officers and other law enforcement. Finally, electrochemical sensor substrates were initially commonly used materials for rigid electrodes, and since the comfort of wearing them was greatly hindered, the construction of electrochemical elements on flexible substrates (polydimethylsiloxane, polyethylene terephthalate, etc.) was investigated, however, the most ideal was always textile-based materials that fit the human body perfectly, so the final development was to give textiles conductivity before constructing electrochemical sensors, which has led to significant progress in wearable e-textiles.

Conclusions and Prospect Nowadays, wearable devices are gradually evolving from single-modal sensing to multimodal sensing capabilities. They can detect signals such as strain, bioelectricity and pressure in the skin along with numerous markers in sweat. The integration of electrochemical sensors for multiple target substances also relies on external power supplies, circuit boards, etc., which increases the rigidity of the sensors to some extent and also requires the development of flexible, long duration power supply devices. Sensors constructed on flexible stretchable substrates mostly rely only on screen printing technology, with relatively poor conductivity and stability. Research on paper-based and textile-based electrochemical sensors is still in its infancy, and the poor electrical conductivity of substrates leads to low sensitivity for the detection of substances with low concentration, and high-precision, high-sensitivity textile-based wearable electrochemical sensors are yet to be tapped for innovation. In addition, the challenges for e-textile sweat biosensors in the textile and electronic fields remain the synthesis and construction of textile-based biosensing materials, skin-sensor interface design, and embedded wireless data acquisition and transmission. With the demand for multi-matter sensing, wearable e-textile devices need to focus more on breathability, portability, and performance stability, and also consider cost and simple and economical preparation strategies to make a long effort to realize wearable smart textiles.

Key words: wearable, sweat, electrochemical sensor, textiles, personalized medicine, flexible electronics

中图分类号: 

  • TP212

表1

汗液中不同物质的可穿戴电化学传感器"

目标物质 基底 检测方法 识别元件 检测限 参考文献
葡萄糖 纤维素纸 安培法 葡萄糖氧化酶 5 μmol/L [30]
PDMS 计时电流法 CoWO4 [37]
镍泡沫片 循环伏安法 Co-MOFs 1.3 nmol/L [38]
柔性印刷电路板 i-t法 ZIF-67 [45]
乳酸 多壁碳纳米管纸 安培法 乳酸脱氢酶 5~100 mmol/L [46]
棉织物 安培法 乳酸脱氢酶 2.9 μmol/L [47]
维生素C 聚氨酯 计时电流法 抗坏血酸氧化酶 0.2 mmol/L [54]
神经肽Y 聚氨酯 电化学阻抗法 金纳米颗粒 50 fmol/L [58]
皮质醇 PET 计时电流法 分子印迹聚合物 0.2 nmol/L [63]
左旋多巴 PET 循环伏安法 酪氨酸酶 1.25 μmol/L [66]
尼古丁 PET 循环伏安法 尼古丁氧化酶 1.6 μmol/L [68]
可卡因 丁腈手套 方波伏安法 阳极溶出 [69]
[1] YANG Y, GAO W. Wearable and flexible electronics for continuous molecular monitoring[J]. Chemical Society Reviews, 2019. 48(6): 1465-1491.
doi: 10.1039/c7cs00730b pmid: 29611861
[2] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521
[3] CHOI J, BANDODKAR A J, REEDER J T, et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature[J]. ACS Sensors, 2019, 4(2): 379-388.
doi: 10.1021/acssensors.8b01218 pmid: 30707572
[4] HE X, YANG S, PEI Q, et al. Integrated smart janus textile bands for self-pumping sweat sampling and analysis[J]. ACS Sensors, 2020, 5(6): 1548-1554.
doi: 10.1021/acssensors.0c00563 pmid: 32466645
[5] GAO W, BROOKS G A, KLONOFF D C. Wearable physiological systems and technologies for metabolic monitoring[J]. Journal of Applied Physiology, 2018, 124(3): 548-556.
doi: 10.1152/japplphysiol.00407.2017 pmid: 28970200
[6] HEIKENFELD J, JAJACK A, FELDMAN B, et al. Accessing analytes in biofluids for peripheral biochemical monitoring[J]. Nature Biotechnology, 2019, 37(4): 407-419.
doi: 10.1038/s41587-019-0040-3 pmid: 30804536
[7] LI G, WEN D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies[J]. Journal of Materials Chemistry B, 2020, 8(16): 3423-3436.
doi: 10.1039/c9tb02474c pmid: 32022089
[8] BANDODKAR A J, JIA W, YARDIMCI C, et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study[J]. Anal Chem, 2015, 87(1): 394-8.
doi: 10.1021/ac504300n pmid: 25496376
[9] TIMOFEEVA I, MEDINSKAIA K, NIKOLAEVA L, et al. Stepwise injection potentiometric determination of caffeine in saliva using single-drop microextraction combined with solvent exchange[J]. Talanta, 2016(150): 655-660.
[10] TIMCHALK C, POET T S, KOUSBA A A, et al. Noninvasive biomonitoring approaches to determine dosimetry and risk following acute chemical exposure: analysis of lead or organophosphate insecticide in saliva[J]. Journal of Toxicology and Environmental Health-Part a-Current Issues, 2004, 67(8/10): 635-650.
doi: 10.1080/15287390490428035
[11] YAN Q, PENG B, SU G, et al. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration[J]. Analytical Chemistry, 2011, 83(21): 8341-8346.
doi: 10.1021/ac201700c pmid: 21961809
[12] PROMPHET N, RATTANAWALEEDIROJN P, SIRALERTMUKUL K, et al. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat ph and lactate[J]. Talanta, 2019(192): 424-430.
[13] PROMPHET N, HINESTROZA J P, RATTANAW-ALEEDIROJN P, et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure[J]. Sensors and Actuators B: Chemical, 2020. DOI: 10.1016/j.snb.2020.128549.
doi: 10.1016/j.snb.2020.128549
[14] CALDARA M, COLLEONI C, GUIDO E, et al. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating[J]. Sensors and Actuators B: Chemical, 2016, 222: 213-220.
doi: 10.1016/j.snb.2015.08.073
[15] SALDANHA D J, ABDALI Z, MODAFFERI D, et al. Fabrication of fluorescent pH-responsive protein-textile composites[J]. Scientific Reports, 2020, 10(1): 1-12.
doi: 10.1038/s41598-019-56847-4
[16] ZHANG J, RUPAKULA M, BELLANDO F, et al. Sweat biomarker sensor incorporating picowatt, three-dimensional extended metal gate ion sensitive field effect transistors[J]. ACS Sensors, 2019, 4(8): 2039-2047.
doi: 10.1021/acssensors.9b00597 pmid: 31282146
[17] KEENE S T, FOGARTY D, COOKE R, et al. Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration[J]. Advanced Healthcare Materials, 2019. DOI: 10.1002/adhm.201901321.
doi: 10.1002/adhm.201901321
[18] CURRANO L J, SAGE F C, HAGEDON M, et al. Wearable sensor system for detection of lactate in sweat[J]. Scientific Reports, 2018, 8(1): 1-11.
[19] KAYA T, LIU G, HO J, et al. Wearable sweat sensors: background and current trends[J]. Electroanalysis, 2019, 31(3): 411-421.
doi: 10.1002/elan.201800677
[20] SHIRREFFS S M, MAUGHAN R J. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content[J]. Journal of Applied Physiology, 1997, 82(1): 336-341.
doi: 10.1152/jappl.1997.82.1.336 pmid: 9029235
[21] CHOI D-H, KIM J S, CUTTING G R, et al. Wearable potentiometric chloride sweat sensor: the critical role of the salt bridge[J]. Analytical Chemistry, 2016, 88(24): 12241-12247.
doi: 10.1021/acs.analchem.6b03391
[22] ALIZADEH A, BURNS A, LENIGK R, et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion[J]. Lab on a Chip, 2018, 18(17): 2632-2641.
doi: 10.1039/c8lc00510a pmid: 30063233
[23] CHOI D H, KITCHEN G, KIM J S, et al. Two distinct types of sweat profile in healthy subjects while exercising at constant power output measured by a wearable sweat sensor[J]. Scientific Reports, 2019, 9(1): 1-9.
doi: 10.1038/s41598-018-37186-2
[24] XU G, CHENG C, LIU Z, et al. Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis[J]. Advanced Materials Technologies, 2019. DOI: 10.1002/admt.201800658.
doi: 10.1002/admt.201800658
[25] ZHANG Q, JIANG D, XU C, et al. Wearable electrochemical biosensor based on molecularly imprinted ag nanowires for noninvasive monitoring lactate in human sweat[J]. Sensors and Actuators B: Chemical, 2020. DOI: 10.1016/j.snb.2020.128325.
doi: 10.1016/j.snb.2020.128325
[26] KIM J, SEMPIONATTO J R, IMANI S, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform[J]. Advanced Science, 2018. DOI: 10.1002/advs.201800880.
doi: 10.1002/advs.201800880
[27] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521
[28] BARIYA M, LI L, GHATTAMANENI R, et al. Glove-based sensors for multimodal monitoring of natural sweat[J]. Science Advances, 2020. DOI: 10.1126/sciadv.abb830.
doi: 10.1126/sciadv.abb830
[29] CHUNG M, FORTUNATO G, RADACSI N. Wearable flexible sweat sensors for healthcare monitoring: a review[J]. Journal of The Royal Society Interface, 2019.DOI: 10.1098/rsif.2019.0217.
doi: 10.1098/rsif.2019.0217
[30] CAO Q, LIANG B, TU T, et al. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection[J]. Rsc Advances, 2019, 9(10): 5674-5681.
doi: 10.1039/C8RA09157A
[31] LEI Y, ZHAO W, ZHANG Y, et al. A mxene-based wearable biosensor system for high-performance in vitro perspiration analysis[J]. Small, 2019. DOI: 10.1002/smll.201901190.
doi: 10.1002/smll.201901190
[32] WANG Y, WANG X, LU W, et al. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat[J]. Talanta, 2019(198): 86-92.
[33] LIU Q, LIU Y, WU F, et al. Highly sensitive and wearable IN2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids[J]. ACS Nano, 2018, 12(2): 1170-1178.
doi: 10.1021/acsnano.7b06823
[34] CHO E, MOHAMMADIFAR M, CHOI S. A single-use, self-powered, paper-based sensor patch for detection of exercise-induced hypoglycemia[J]. Micromachines, 2017. DOI: 10.3390/mi8090265.
doi: 10.3390/mi8090265
[35] HAN J, LI M, LI H, et al. Pt-poly(L-lactic acid) microelectrode-based microsensor for in situ glucose detection in sweat[J]. Biosensors & Bioelectronics, 2020. DOI: 10.1016/j.bios.2020.112675.
doi: 10.1016/j.bios.2020.112675
[36] CHENG S Y, GAO X, DELACRUZ S, et al. In situ formation of metal-organic framework derived cuo polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing[J]. Journal of Materials Chemistry B, 2019, 7(32): 4990-4996.
doi: 10.1039/c9tb01166h pmid: 31411623
[37] OH S Y, HONG S Y, JEONG Y R, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13729-13740.
[38] LI Y, XIE M W, ZHANG X P, et al. Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection[J]. Sensors and Actuators B-Chemical, 2019, 278: 126-132.
doi: 10.1016/j.snb.2018.09.076
[39] WU L, LU Z W, YE J S. Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2019, 135: 45-49.
doi: 10.1016/j.bios.2019.03.064
[40] QIAO Y, ZHANG R, HE F, et al. A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands[J]. New Journal of Chemistry, 2020, 44(41): 17849-17853.
doi: 10.1039/D0NJ04150E
[41] MENON S S, CHANDRAN S V, KOYAPPAYIL A, et al. Copper-based metal-organic frameworks as peroxidase mimics leading to sensitive H2O2 and glucose detection[J]. Chemistryselect, 2018, 3(28): 8319-8324.
doi: 10.1002/slct.201800667
[42] SHAHROKHIAN S, SANATI E K, HOSSEINI H. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform[J]. Biosensors & Bioelectronics, 2018, 112: 100-107.
doi: 10.1016/j.bios.2018.04.039
[43] ZHAO Y, ZHAI Q, DONG D, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat[J]. Analytical Chemistry, 2019, 91(10): 6569-6576.
doi: 10.1021/acs.analchem.9b00152 pmid: 31006229
[44] XU Z H, WANG Q Z, HUI Z S, et al. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: a stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage[J]. Food Chemistry, 2021. DOI: 10.1016/j.foodchem.2021.129202.
doi: 10.1016/j.foodchem.2021.129202
[45] ZHU X F, YUAN S, JU Y H, et al. Water splitting-assisted electrocatalytic oxidation of glucose with a metal-organic framework for wearable nonenzymatic perspiration sensing[J]. Analytical Chemistry, 2019, 91(16): 10764-10771.
doi: 10.1021/acs.analchem.9b02328 pmid: 31361125
[46] GARCIA S O, ULYANOVA Y V, FIGUEROA-TERAN R, et al. Wearable sensor system powered by a biofuel cell for detection of lactate levels in sweat[J]. Ecs Journal of Solid State Science and Technology, 2016, 5(8): M3075-M3081.
doi: 10.1149/2.0131608jss
[47] LUO X J, YU H R, CUI Y. A wearable amperometric biosensor on a cotton fabric for lactate[J]. IEEE Electron Device Letters, 2018, 39(1): 123-126.
doi: 10.1109/LED.2017.2777474
[48] YANG Y, SONG Y, BO X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 2020, 38(2): 217-224.
doi: 10.1038/s41587-019-0321-x pmid: 31768044
[49] ELDAMAK A R, FEAR E C. Conformal and disposable antenna-based sensor for non-invasive sweat moni-toring[J]. Sensors, 2018. DOI: 10.3390/s18124088.
doi: 10.3390/s18124088
[50] CUNHA-SILVA H, JULIA ARCOS-MARTINEZ M. Development of a selective chloride sensing platform using a screen-printed platinum electrode[J]. Talanta, 2019(195): 771-777.
[51] HE W, WANG C, WANG H, et al. Integrated textile sensor patch for real-time and multiplex sweat analysis[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aax0649.
doi: 10.1126/sciadv.aax0649
[52] PARRILLA M, CANOVAS R, JEERAPAN I, et al. A textile-based stretchable multi-ion potentiometric sensor[J]. Advanced Healthcare Materials, 2016, 5(9): 996-1001.
doi: 10.1002/adhm.201600092 pmid: 26959998
[53] WIOREK A, PARRILLA M, CUARTERO M, et al. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice[J]. Analytical Chemistry, 2020, 92(14): 10153-10161.
doi: 10.1021/acs.analchem.0c02211 pmid: 32588617
[54] SEMPIONATTO J R, KHORSHED A A, AHMED A, et al. Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition[J]. ACS Sensors, 2020, 5(6): 1804-1813.
doi: 10.1021/acssensors.0c00604 pmid: 32366089
[55] CHURCHER N K M, UPASHAM S, RICE P, et al. Development of a flexible, sweat-based neuropeptide y detection platform[J]. RSC Advances, 2020, 10(39): 23173-23186.
doi: 10.1039/D0RA03729J
[56] ISLAM A E, MARTINEAU R, CRASTO C M, et al. Graphene-based electrolyte-gated field-effect transistors for potentiometrically sensing neuropeptide y in physiologically relevant environments[J]. ACS Applied Nano Materials, 2020, 3(6): 5088-5097.
doi: 10.1021/acsanm.0c00353
[57] XIAO X, KUANG Z, BURKE B J, et al. In silico discovery and validation of neuropeptide-y-binding peptides for sensors[J]. Journal of Physical Chemistry B, 2020, 124(1): 61-68.
doi: 10.1021/acs.jpcb.9b09439
[58] HUYNH V L, TRUNG T Q, MEESEEPONG M, et al. Hollow microfibers of elastomeric nanocomposites for fully stretchable and highly sensitive microfluidic immunobiosensor patch[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004684.
doi: 10.1002/adfm.202004684
[59] MUNJE R D, MUTHUKUMAR S, PRASAD S. Interfacial tuning for detection of cortisol in sweat using zno thin films on flexible substrates[J]. IEEE Transactions on Nanotechnology, 2017, 16(5): 832-836.
doi: 10.1109/TNANO.2017.2685529
[60] PARLAK O, KEENE S T, MARAIS A, et al. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aar2904.
doi: 10.1126/sciadv.aar2904
[61] TORRENTE-RODRIGUEZ R M, TU J, YANG Y, et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system[J]. Matter, 2020, 2(4): 921-937.
doi: 10.1016/j.matt.2020.01.021
[62] TU E, PEARLMUTTER P, TIANGCO M, et al. Comparison of colorimetric analyses to determine cortisol in human sweat[J]. ACS Omega, 2020, 5(14): 8211-8218.
doi: 10.1021/acsomega.0c00498 pmid: 32309731
[63] TANG W X, YIN L, SEMPIONATTO J R, et al. Touch-based stressless cortisol sensing[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202008465.
doi: 10.1002/adma.202008465
[64] TEYMOURIAN H, PARRILLA M, SEMPIONATTO J R, et al. Wearable electrochemical sensors for the monitoring and screening of drugs[J]. ACS Sensors, 2020, 5(9): 2679-2700.
doi: 10.1021/acssensors.0c01318 pmid: 32822166
[65] LIN S, WANG B, YU W, et al. Design framework and sensing system for noninvasive wearable electroactive drug monitoring[J]. ACS Sensors, 2020, 5(1): 265-273.
doi: 10.1021/acssensors.9b02233 pmid: 31909594
[66] TAI L C, LIAW T S, LIN Y, et al. Wearable sweat band for noninvasive levodopa monitoring[J]. Nano Letters, 2019, 19(9): 6346-6351.
doi: 10.1021/acs.nanolett.9b02478
[67] BARFIDOKHT A, MISHRA R K, SEENIVASAN R, et al. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl[J]. Sensors and Actuators B: Chemical, 2019. DOI: 10.1016/j.snb.2019.04.053.
doi: 10.1016/j.snb.2019.04.053
[68] TAI L C, AHN C H, NYEIN H Y Y, et al. Nicotine monitoring with a wearable sweat band[J]. ACS Sensors, 2020, 5(6): 1831-1837.
doi: 10.1021/acssensors.0c00791
[69] DE JONG M, SLEEGERS N, KIM J, et al. Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders[J]. Chemical Science, 2016, 7(3): 2364-2370.
doi: 10.1039/c5sc04309c pmid: 29997780
[70] WINDMILLER J R, BANDODKAR A J, VALDES-RAMIREZ G, et al. Electrochemical sensing based on printable temporary transfer tattoos[J]. Chemical Communications, 2012, 48(54): 6794-6796.
doi: 10.1039/c2cc32839a
[71] BARIYA M, SHAHPAR Z, PARK H, et al. Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices[J]. ACS Nano, 2018, 12(7): 6978-6987.
doi: 10.1021/acsnano.8b02505 pmid: 29924589
[72] NYEIN H Y Y, BARIYA M, KIVIMAKI L, et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aaw990.
doi: 10.1126/sciadv.aaw990
[73] NESAEI S, SONG Y, WANG Y, et al. Micro additive manufacturing of glucose biosensors: a feasibility study[J]. Analytica Chimica Acta, 2018, 1043: 142-149.
doi: S0003-2670(18)31070-5 pmid: 30392662
[74] BAYSAL G, ONDER S, GOCEK I, et al. Microfluidic device on a nonwoven fabric: a potential biosensor for lactate detection[J]. Textile Research Journal, 2014, 84(16): 1729-1741.
doi: 10.1177/0040517514528565
[75] WANG R, ZHAI Q, GONG S, et al. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat[J]. Talanta, 2021. DOI: 10.1016/j.talanta.2020.121484.
doi: 10.1016/j.talanta.2020.121484
[76] 李萌. Ti3C2Tx修饰的纸基/织物基电化学汗液传感器[D]. 上海: 东华大学, 2021: 26-28.
LI Meng. Ti3C2Tx modified paper/fabric based electrochemical sweat sensors[D]. Shanghai: Donghua University, 2021: 26-28.
[77] COPPEDE N, TARABELLA G, VILLANI M, et al. Human stress monitoring through an organic cotton fiber biosensor[J]. Journal of Materials Chemistry B, 2014, 2(34): 5620-5626.
doi: 10.1039/C4TB00317A
[78] ZHAO C, LI X, WU Q, et al. A thread-based wearable sweat nanobiosensor[J]. Biosensors & Bioelectronics, 2021. DOI: 10.1016/j.bios.2021.113270.
doi: 10.1016/j.bios.2021.113270
[79] IMANI S, BANDODKAR A J, MOHAN A M V, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring[J]. Nature Communications, 2016, 7(1): 1-7.
[1] 苏淼, 周凯丽, 段怡婷, 鲁佳亮, 杨丽梅. 基于色度测量的乾隆色谱色彩特征研究[J]. 纺织学报, 2023, 44(03): 132-138.
[2] 朱维维, 龙家杰, 施楣梧. 粘胶织物中烟酰胺的释放曲线及其模型拟合[J]. 纺织学报, 2023, 44(03): 139-146.
[3] 王曙东, 马倩, 王可, 谷元慧. 3D生物打印制备组织工程支架的研究进展[J]. 纺织学报, 2023, 44(03): 210-220.
[4] 韩非, 郎晨宏, 邱夷平. 废旧纺织品循环经济的监督检验体系研究进展[J]. 纺织学报, 2023, 44(03): 231-238.
[5] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[6] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[7] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[8] 乌婧, 江振林, 吉鹏, 谢锐敏, 陈烨, 陈向玲, 王华平. 纺织品前瞻性制备技术及应用研究现状与发展趋势[J]. 纺织学报, 2023, 44(01): 1-10.
[9] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[10] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[11] 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108.
[12] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[13] 尹喆, 赵海浪, 徐红, 毛志平, 谭玉静. 纺织品中喹啉含量的快速测定[J]. 纺织学报, 2022, 43(12): 125-130.
[14] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[15] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!