纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 28-35.doi: 10.13475/j.fzxb.20211100408

• 纤维材料 • 上一篇    下一篇

热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化

杨广鑫1, 张庆乐1, 李小超1, 李思瑜1, 陈辉2, 程璐1, 夏鑫1()   

  1. 1.新疆大学 纺织与服装学院, 新疆 乌鲁木齐 830046
    2.新疆际华七五五五职业装有限公司, 新疆 昌吉 831100
  • 收稿日期:2021-11-01 修回日期:2022-05-25 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 夏鑫(1980—),女,教授,博士。主要研究方向为功能纺织材料的开发与应用。E-mail:xjxiaxin@163.com
  • 作者简介:杨广鑫(1996—),男,硕士生。主要研究方向为功能纺织材料的开发与应用。
  • 基金资助:
    天山青年计划项目(2020Q003);昌吉回族自治州科技创新项目(2021F081);昌吉回族自治州科技创新项目(2020203)

Preparation and property optimization of waterproof and moisture permeable membrane made from thermally induced fusion bonded polyurethane/polydimethylsiloxane

YANG Guangxin1, ZHANG Qingle1, LI Xiaochao1, LI Siyu1, CHEN Hui2, CHENG Lu1, XIA Xin1()   

  1. 1. College of Textile and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
    2. Xinjiang Jihua 7555 Professional Wear Co., Ltd., Changji, Xinjiang 831100, China
  • Received:2021-11-01 Revised:2022-05-25 Published:2023-03-15 Online:2023-04-14

摘要:

为提高纳米纤维膜的防水、透湿和力学性能,在聚氨酯(PU)纺丝液中添加无氟疏水剂聚二甲基硅氧烷(PDMS),采用静电纺丝法制备静电纺PU/PDMS防水透湿膜,并在此基材上采用静电喷雾法沉积PU/PDMS微球制备静电喷雾PU/PDMS防水透湿膜;利用热诱导工艺分别对静电纺PU/PDMS和静电喷雾PU/PDMS防水透湿膜进行热处理改性,研究了热处理温度和时间对其形貌、孔径分布、防水性能、透气透湿性能及力学性能的影响,并对其影响机制进行分析。结果表明:静电喷雾PU/PDMS防水透湿膜的防水透湿性能优于静电纺PU/PDMS防水透湿膜,但经热处理后由于膜内部产生更多粘连,导致孔隙率降低,防水透湿性能出现下降;热处理后静电纺PU/PDMS防水透湿膜的孔径大大降低,并使其串珠结构向蛛网结构转化,防水性能和力学性能显著提升,当加热温度为100 ℃,加热时间为90 min时,其水接触角达到144.7°,透湿率为5 666.7 g/(m2·d),透气率为9.91 mm/s,断裂强度为17.9 MPa,断裂伸长率为210.7%。

关键词: 聚二甲基硅氧烷, 聚氨酯, 纳米纤维膜, 防水透湿, 静电纺丝, 静电喷雾

Abstract:

Objective This research was an effort to prepare electrospun nanomembranes having good waterproofness, mechanical properties, moisture permeability, improved wearing comfort and required mechanical properties. It also expected to expand the applications of nanomembranes into areas such as outdoor sports, protection and filtration.

Method PU/PDMS nanofiber membranes (PU/PDMS NMs) were prepared by electrospinning by adding non-fluorinated hydrophobic polydimethylsiloxane (PDMS) into PU spinning solution. The electrostatic sprayed PU/PDMS NMs were then prepared by depositing PU/PDMS microspheres on the PU/PDMS NMs substrate, and the PU/PDMS NMs and electrostatic sprayed PU/PDMS NMs were modified by using a heat thermal induction process, respectively. The influences of heating temperature and heating time on the morphology, pore size distribution, waterproof, permeability and mechanical properties of nanofiber membranes were studied, and the influencing mechanism was analyzed.

Results The waterproofness and moisture permeability of the electrostatic sprayed PU/PDMS waterproof and moisture permeable membrane before heat treatment is better than that of the electro spun PU/PDMS waterproof and moisture permeable film (Tab.3), where the waterproofness and moisture permeability of the electrostatic sprayed PU/PDMS waterproof and moisture permeable membrane is greatly improved. Heat treatment of electrostatic sprayed PU/PDMS waterproof permeable membrane achieves the waterproofness and permeability property not as good as that of the heat treatment of electrostatic spun PU/PDMS, mainly because heat treatment of electrostatic sprayed PU/PDMS waterproof permeable membrane causes more adhesion, porosity reduction, making the waterproof and moisture permeability not as good as its electrostatic spun counterpart (Tab.3 and Tab.4). The pore size of the electrospun PU/PDMS NMs after heat treatment was greatly reduced (Tab.2), and the beading structure of the electrospun PU/PDMS NMs was transformed into a spider structure (Fig.3 and Fig.4), which not only greatly improved the waterproof property of the PU/PDMS NMs but also significantly improved its mechanical properties. When the heat treatment temperatures were 80 ℃ and 100 ℃, the temperatures were not enough to allow the nanofibers and microspheres in the membrane to be fully softened, so that the heat treatment time had to be increased to form a sufficient adhesion structure. However, when the heating temperature was 120 ℃, the excessive temperature caused the polymer molecules to become relaxed and disrupted the micro-nanostructure, resulting in a reduction in the waterproof and mechanical properties of the membrane (Tab.3 and Tab.5). When the heating temperature was 100 ℃ and the heating time was 90 min, the electrospun PU/PDMS NMs showed the excellent performance with a water contact angle of 144.7°, and also exhibited good moisture permeability, air permeability and mechanical properties, the moisture permeability was up to 5 666.7 g/(m2·d), air permeability was up to 9.91 mm/s, breaking strength was up to 17.89 MPa, and the elongation at break was 210.68%.

Conclusion The heat treatment transforms the bead structure of the electrospun PU/PDMS NMs into a spider web structure, which improves the performance of the waterproof and permeable membrane. However, after heat treatment, the spider web structure of the former PU/PDMS NMs disappears and the waterproof and permeable properties of the membrane decreases. On the other hand, the spider web structure of the membrane becomes stable after heat treatment. By increasing the heat treatment temperature and time period, the adhesive structure in the waterproof permeable membrane can be increased, the pore size can be reduced, and the surface roughness can be improved, so as to improve the mechanical and waterproof properties of the waterproof permeable membrane. It was found that excessive temperature would relax the polymer molecules, while prolonging the heating time reduces the mechanical properties of the membrane, so that the adhered nanofibers almost become smooth, leading to a decrease in waterproofing properties. Although the membrane prepared by this method has good waterproof, permeable and mechanical properties, it cannot meet the demand for waterproof property under harsh conditions and still has a certain gap compared to the waterproof permeable fabric containing fluorine, which calls for further improvement.

Key words: polydimethylsiloxane, polyurethane, nanomembrane, waterproofness and moisture permeability, electrospinning, electrostatic spraying

中图分类号: 

  • TS174.8

图1

静电喷雾PU/PDMS防水透湿膜的制备示意图"

表1

静电纺PU/PDMS防水透湿膜的热处理参数"

样品编号 加热温度/℃ 加热时间/min
0# 0 0
1# 80 30
2# 60
3# 90
4# 100 30
5# 60
6# 90
7# 120 30
8# 60
9# 90

图2

静电纺PU/PDMS防水透湿膜的DSC谱图"

图3

未经热处理静电纺和静电喷雾PU/PDMS防水透湿膜的SEM照片"

图4

热处理后静电纺和静电喷雾PU/PDMS防水透湿膜的SEM照片"

表2

热处理后静电纺PU/PDMS防水透湿膜的孔径分布"

样品编号 平均孔径/μm 最大孔径/μm
0# 1.121 2.386
1# 1.036 2.227
2# 0.979 2.124
3# 0.854 2.089
4# 0.718 1.770
5# 0.601 1.591
6# 0.516 1.449
7# 0.289 1.222
8# 0.279 1.231
9# 0.287 1.243

表3

热处理后静电纺和静电喷雾PU/PDMS防水透湿膜的水接触角"

样品编号 水接触角/(°)
0# 137.9
1# 140.9
2# 141.2
3# 142.1
4# 142.4
5# 143.3
6# 144.7
7# 139.5
8# 137.9
9# 134.4
10# 142.3

图5

未经热处理的静电喷雾PU/PDMS防水透湿膜的防水效果"

表4

热处理后静电纺和静电喷雾PU/PDMS防水透湿膜的透气透湿性能"

样品编号 透湿率/(g·m-2·d-1) 透气率/(mm·s-1)
0# 7 533.3 30.91
1# 6 932.6 19.30
2# 6 510.7 16.05
3# 6 320.6 14.12
4# 5 932.8 11.32
5# 5 733.3 10.54
6# 5 666.7 9.91
7# 4 903.6 6.34
8# 4 840.0 6.20
9# 4 800.0 5.90
10# 3 234.3 5.04

表5

热处理后静电纺和静电喷雾PU/PDMS防水透湿膜的力学性能"

样品编号 断裂强度/MPa 断裂伸长率/%
0# 7.37 291.36
1# 11.24 276.59
2# 11.83 284.28
3# 12.30 269.40
4# 17.23 248.60
5# 17.65 231.32
6# 17.89 210.68
7# 15.29 245.93
8# 13.38 256.30
9# 12.96 263.75
10# 19.73 260.21
[1] 姚琛琛. 负载ZnO的聚氨酯/聚砜复合纳米纤维膜的制备及其防水透湿性能研究[D]. 上海: 东华大学, 2021: 5-6.
YAO Chenchen. Preparation of polyurethane/polysulfone composite nanofiber membrane loaded with zno and research on its waterproof and moisture permeability[D]. Shanghai: Donghua University, 2021: 5-6.
[2] 丁子寒, 初曦, 邹婷婷, 等. 防水透湿织物的研究进展[J]. 服装学报, 2019, 4(5): 383-387,419.
DING Zihan, CHU Xi, ZOU Tingting, et al. Research progress of waterproof and moisture-permeable fabrics[J]. Journal of Clothing Research, 2019, 4(5): 383-387,419.
[3] 杨芳芳. 聚偏氟乙烯纤维膜的制备及其防水/防风和透湿性能研究[D]. 上海: 东华大学, 2017: 5-6.
YANG Fangfang. Preparation of polyvinylidene fluoride fiber membrane and its waterproof/windproof and moisture permeability performance[D]. Shanghai: Donghua University, 2017: 5-6.
[4] SHENG Junlu, ZHANG Min, XU Yue, et al. Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 3-4.
[5] GU Jiatai, QUAN Zhenzhen, WANG Liming, et al. Fiber-microsphere binary structured composite fibrous membranes for waterproof and breathable applications[J]. Fibers and Polymers, 2022, 23(6): 1500-1507.
doi: 10.1007/s12221-022-4563-8
[6] DU Xuanxuan, XIN Binjie, XU Jinhao, et al. Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable applic-ation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612: 1-9.
[7] AN A K, GUO J, LEE E J, et al. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation[J]. Journal of Membrane Science, 2017, 525: 57-67.
doi: 10.1016/j.memsci.2016.10.028
[8] YU Yunge, LIU Yan, ZHANG Fuli, et al. Preparation of waterproof and breathable polyurethane fiber membrane modified by fluorosilane-modified silica[J]. Fibers and Polymers, 2020, 21(5): 955-963.
[9] 张琼, 刘翰霖, 李平平, 等. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(2): 1-7.
ZHANG Qiong, LIU Hanlin, LI Pingping, et al. Preparation of polyurethane/silica composite ultrafine fiber membrane and its waterproof and moisture permeability[J]. Journal of Textile Research, 2019, 40(2): 1-7.
doi: 10.1177/004051757004000101
[10] JU Jingge, SHI Zhijie, DENG Nanping, et al. Designing waterproof breathable material with moisture unidirectional transport characteristics based on a TPU/TBAC tree-like and TPU nanofiber double-layer membrane fabricated by electrospinning[J]. RSC Advances, 2017, 7(51): 32155-32162.
doi: 10.1039/C7RA04843B
[11] LIANG Yinzheng, CHENG Sichen, ZHAO Jianmeng, et al. Heat treatment of electrospun polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries[J]. Journal of Power Sources, 2013, 240(10): 204-211.
doi: 10.1016/j.jpowsour.2013.04.019
[12] 孙哲茹, 张庆乐, 郝林聪, 等. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(4): 40-46.
SUN Zheru, ZHANG Qingle, HAO Lincong, et al. Preparation and properties of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star-like topological geometry[J]. Journal of Textile Research, 2022, 43(4): 40-46.
[13] 夏鑫. 蛛网结构混纺防水透湿膜的制备方法:202210071712.7[P]. 2022-05-27.
XIA Xin. Preparation method of spider web structured blended waterproof and moisture permeable membrane: 202210071712.7[P]. 2022-05-27.
[14] 刘涛. 微结构表面PVDF/UHMWPE平板膜的制备与性能研究[D]. 天津: 天津工业大学, 2019: 5-7.
LIU Tao. Preparation and performance of PVDF/UHMWPE flat membrane with microstructure surface[D]. Tianjin: Tiangong University, 2019: 5-7.
[15] 顾先袁. 多组分聚氨酯纳米纤维膜的制备及防水透湿性能研究[D]. 杭州: 浙江理工大学, 2018: 16-23.
GU Xianyuan. Preparation of multi-component polyurethane nanofiber membrane and study on its waterproof and moisture permeability[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 16-23.
[16] GU Jiatai, GU Haihong, CAO Jin, et al. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application[J]. Applied Surface Science, 2018, 439: 589-597.
doi: 10.1016/j.apsusc.2017.12.267
[17] 朱志高. 超选择润湿性膜界面的构筑及含油高盐废水处理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 43-45.
ZHU Zhigao. The construction of super-selective wettability membrane interface and the treatment of oily and high-salt wastewater[D]. Harbin: Harbin Institute of Technology, 2019: 43-45.
[18] 朱卫霞. 环境友好型含氢硅烷/聚氨酯防水透湿纳米纤维膜的制备及性能研究[D]. 上海: 东华大学, 2020: 32-33.
ZHU Weixia. Preparation and performance of environmentally friendly hydrogen-containing silane/polyurethane waterproof and moisture-permeable nanofiber membrane[D]. Shanghai: Donghua University, 2020: 32-33.
[1] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[2] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[3] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[4] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[5] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[6] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[7] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[8] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[9] 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70.
[10] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[11] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[12] 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
[13] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[14] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[15] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!