纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 36-41.doi: 10.13475/j.fzxb.20220204006

• 纤维材料 • 上一篇    下一篇

电压对静电纺串珠纤维成形过程的影响

葛铖1, 郑元生1,2(), 刘凯1, 辛斌杰1   

  1. 1.上海工程技术大学 纺织服装学院, 上海 201620
    2.嘉兴学院 浙江省纱线材料成形与复合加工技术研究重点实验室, 浙江 嘉兴 314001
  • 收稿日期:2022-02-28 修回日期:2022-11-11 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 郑元生(1987—),女,副教授,博士。主要研究方向为微纳米纤维制备及其机制。E-mail:yuansheng@sues.edu.cn
  • 作者简介:葛铖(1998—),男,硕士生。主要研究方向为溶液静电纺丝制备微纳米纤维及其机制。
  • 基金资助:
    国家自然科学基金项目(11702169);浙江省纱线材料成形与复合加工技术研究重点实验室开放基金项目(MTC-2022-01)

Influence of voltage on forming process of electrospinning beaded fiber

GE Cheng1, ZHENG Yuansheng1,2(), LIU Kai1, XIN Binjie1   

  1. 1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2022-02-28 Revised:2022-11-11 Published:2023-03-15 Online:2023-04-14

摘要:

以聚苯乙烯为原材料,观察在不同电压条件下以及射流不同区域的串珠纤维,研究电压对串珠形态、纤维运动速度的影响以及串珠形态在射流过程中的演变。采用高速摄影,显微镜对射流过程以及纤维形态进行表征。运用有限元仿真软件对电场、串珠形貌和串珠纤维运动速度进行模拟,建立串珠模型。研究结果表明:纺丝电压增大,射流受到的拉伸作用更明显,串珠形态逐渐由近似圆形变为纺锤形,同时串珠的表面速度也随着电压的增大而增大,实验结果与仿真模拟结果一致;射流直线段并未出现串珠结构,串珠在鞭动区域逐步形成,同时,在越靠近接收装置的射流区域,串珠纤维受到的拉伸作用越明显。

关键词: 静电纺丝, 串珠纤维, 成形过程, 纺丝电压, 有限元模拟

Abstract:

Objective The sizes and morphologies of microbeads on beaded fibers will lead to great differences in the overall performance of electrospinning fiber membranes, and thus fiber membranes with specific functions can be prepared in a directional manner by adjusting the size and morphology of beads on beaded fibers. As an important factor affecting the electrospinning process, electric field has not been used as the main research object in the process of preparing beaded fibers up to date. Therefore, it is necessary to investigate the influence of applied voltage on the structure and morphology of microbeads during electrospinning.

Method Beaded fibers were prepared by electrospinning using polystyrene (PS). Light microscope and scanning electron microscope (SEM) were adopted to observe the morphology of fibers, and the influence of applied voltage on the morphology of microbeads was studied. By observing the beaded fibers intercepted in different areas of the electrospinning jet, the evolution of beading morphology during jet whipping was explored. At the same time, the finite element simulation software COMSOL was adopted to simulate the three-dimensional electric field, bead morphology and beaded fiber movement speed. The simulation results were compared with the experimental results for model validation.

Results Based on the simulation results of the magnitude and direction of the electric field, it is evident that the strong electric field is mainly concentrated near the spinneret. As the spinning voltage increases, greater electric field strength in the spinning area leads to stronger tensile effect of the jet. This results in a beaded shape that is approximately circular at an applied voltage of 15 kV and the beaded fibers are bent disorderedly. When the applied voltage is 25 kV, the shape of the beads is close to the spindle shape, and the fibers between the beads are more regular and orderly. As the spinning voltage increases, the speed of the beaded fibers gradually increases. When the voltage is in the range of 20 and 25 kV, the speed of the beaded fibers increases more significantly, because at larger spinning voltages, the solution in the jet is more polarized, the charge on the jet surface is higher, and the force of the electric field is stronger. Owing to the larger surface area of the bead, more charge is generated by the electric field polarization of the jet in the beaded part, which is associated to stronger the electric field drafting, resulting in a greater speed in the beaded part than the speed of the fiber part. It is clearly shown that only the Shish-Kebab (string crystal) structure exists in the linear segment of the jet. This is because the strong electric field is concentrated near the spinneret and the polymer is strongly sheared or stretched. Gradual formation of a beaded structure is observed at the end of the straight segment, because the large tensile force of the electric field causes the jet to break, the broken jet is directly drawn from the Taylor cone, and the droplet tends to contract to form beaded fibers. The result also shows that the closer is the fiber morphology intercepted in the spinning direction to the collector, the longer the electric field of the jet is subjected to and the longer the whipping disturbance action time. The shape of the beads gradually tends to spindle shape under the action of stretching.

Conclusion In this paper, PS was used as raw material to prepare beaded fiber membranes by electrospinning method, and the evolution process of solution electro spun PS beaded fibers and the influence of spinning voltage on beaded morphology and fiber speed were investigated. The experimental results provide a theoretical basis for the controllable preparation of beaded fibers. 1) In the process of electrospinning, as the applied voltage increases, the stretching effect of the jet is more obvious, the beaded shape gradually changes from an approximate sphere to a spindle shape, and the movement speed of the beaded fiber also increases with the increase of the applied voltage. 2) The beaded structure is not formed on the linear segment of the jet, and gradually forms in the whipping zone, and the jet zone is made closer to the collector, the jet is subjected to the electric field and whipping action for a longer time, and the stretching effect of the beaded fiber is more obvious.

Key words: electrospinning, beaded fiber, forming process, spinning voltage, finite element simulation

中图分类号: 

  • TS102

图1

溶液静电纺丝装置图"

图2

20 kV时电场强度等值线图 注:等值线的密集程度表示电场的强弱,箭头表示电场的方向。"

图3

沿Z轴从喷丝头到接收装置的电场强度"

图4

串珠形态的模拟及显微镜照片"

表1

串珠及纤维的运动速度随电压的变化"

纺丝电压/kV 串珠运动速度/(m·s-1) 纤维运动速度/(m·s-1)
10 0.51 0.47
15 1.09 0.82
20 1.92 1.13
25 7.64 5.45

图5

射流运动轨迹及射流不同区域的串珠形态"

[1] MAGHSOODLOU S, NOROOZI B, HAGHI A K. A simple model for solvent evaporation in electrospinning process[J]. Nano, 2016, 12(3): 919-73.
[2] 缪月娥, 刘天西. 基于静电纺丝技术的多级结构聚合物纳米纤维复合材料的研究进展[J]. 高分子学报, 2012(8): 801-811.
MIAO Yuee, LIU Tianxi. Recent progress in hierarchically organized polymer nanocomposites based on electrospun nanofibers[J]. Acta Polymerica Sinica, 2012(8): 801-811.
[3] 李玛莎, 郑元生, 辛斌杰, 等. 多级纳米纤维成型机理的研究进展[J]. 印染助剂, 2020, 37(5): 14-19.
LI Masha, ZHENG Yuansheng, XIN Binjie, et al. Research development of formation mechanism of hierarchical structure nanofibers[J]. Textile Auxiliaries, 2020, 37(5): 14-19.
[4] WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtra-tion[J]. Journal of Colloid & Interface Science, 2015, 441: 121-129.
[5] GAO J, SONG X, HUANG X, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science, 2018, 439: 394-404.
doi: 10.1016/j.apsusc.2018.01.013
[6] HE C, HUANG Z, HAN X, et al. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery[J]. Journal of Macromolecular Science, 2006, 45(4): 515-524.
doi: 10.1080/00222340600769832
[7] 赵伟, 王劭妤, 卫志美, 等. 空气过滤用聚芳硫醚砜/纳米二氧化硅复合静纺纳米纤维膜的制备及应用[J]. 高分子材料科学与工程, 2020, 36(10): 144-151.
ZHAO Wei, WANG Shaoyu, WEI Zhimei, et al. Preparation of electro-spun polyaryl sulfone/nano silica composite nanofibrous membranes for air filtration[J]. Polymer Materials Science and Engineering, 2020, 36(10): 144-151.
[8] ALIHEIDARI N, ALIAHMAD N, AGARWAL M, et al. Electrospun nanofibers for label-sree sensor applic-ations[J]. Sensors, 2019.DOI: 10.3390/s19163587.
doi: 10.3390/s19163587
[9] 刘兆麟, 岳承明, 张威. 静电纺聚乳酸串珠纤维的药物缓释性能[J]. 国际纺织导报, 2020, 48(10): 10-12,17.
LIU Zhaolin, YUE Chengming, ZHANG Wei. Electrospun bead-on-string PLA nanofibers for sustained drug release[J]. Meiliand China, 2020, 48(10): 10-12,17.
[10] ZHU L, ZAAROUR B, JIN X. Unexpectedly high oil cleanup capacity of electrospun poly (vinylidene fluoride) fiber webs induced by spindle porous bowl like beads[J]. Soft Materials, 2019. DOI: 10.1080/1539445X.2019.1614060.
doi: 10.1080/1539445X.2019.1614060
[11] AMIRAH M A, KHAIRUNNISA M P, ATIQAH S N, et al. Electrospinning of PLA with DMF: effect of polymer concentration on the bead diameter of the electrospun fibre[J]. Materials Science and Engineering, 2020.DOI: 10.1088/1757-899X/778/1/012087.
doi: 10.1088/1757-899X/778/1/012087
[12] CLASEN C, EGGERS J, FONTELOS M A, et al. The beads-on-string structure of viscoelastic threads[J]. Journal of Fluid Mechanics, 2006, 556(556): 283-308.
doi: 10.1017/S0022112006009633
[13] WENDERPTT J K, XUAN D B, GREEN P F. Morphological design strategies to tailor out-of-plane charge transport in conjugated polymer systems for device applications[J]. Physical Chemistry Chemical Physics, 2021, 23(48): 27076-27102.
doi: 10.1039/D1CP02476K
[14] ZHENG Y S, XIN B J, LI M S. Model development and validation of electrospun jet formation[J]. Textile Research Journal, 2019, 89(11): 2177-2186.
doi: 10.1177/0040517518786280
[15] ZHENG Y S, MENG N, XIN B J. Effects of jet path on electrospun polystyrene fibers[J]. Polymers, 2018.DOI: 10.3390/polym10080842.
doi: 10.3390/polym10080842
[16] ZHENG Y S, SHENG X, ZENG Y C. Electric field distribution and jet motion in electrospinning process: from needle to hole[J]. Journal of Materials Science, 2013, 48(19): 6647-6655.
doi: 10.1007/s10853-013-7465-8
[17] 成惠斌, 钱庆荣, 陈建福. 高性能自增强聚乙烯复合材料的研究进展[J]. 精细石油化工进展, 2020, 21(5): 31-39.
CHENG Huibin, QIAN Qingrong, CHEN Jianfu. Progress of research on high performance self-enhancement polyethylene composites[J]. Advance in Fine Petrochemicals, 2020, 21(5): 31-39.
[1] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[2] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[3] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[4] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[5] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[6] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[7] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[8] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[9] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[10] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[11] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
[12] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[13] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[14] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[15] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!