纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 36-41.doi: 10.13475/j.fzxb.20220204006
GE Cheng1, ZHENG Yuansheng1,2(), LIU Kai1, XIN Binjie1
摘要:
以聚苯乙烯为原材料,观察在不同电压条件下以及射流不同区域的串珠纤维,研究电压对串珠形态、纤维运动速度的影响以及串珠形态在射流过程中的演变。采用高速摄影,显微镜对射流过程以及纤维形态进行表征。运用有限元仿真软件对电场、串珠形貌和串珠纤维运动速度进行模拟,建立串珠模型。研究结果表明:纺丝电压增大,射流受到的拉伸作用更明显,串珠形态逐渐由近似圆形变为纺锤形,同时串珠的表面速度也随着电压的增大而增大,实验结果与仿真模拟结果一致;射流直线段并未出现串珠结构,串珠在鞭动区域逐步形成,同时,在越靠近接收装置的射流区域,串珠纤维受到的拉伸作用越明显。
中图分类号:
[1] | MAGHSOODLOU S, NOROOZI B, HAGHI A K. A simple model for solvent evaporation in electrospinning process[J]. Nano, 2016, 12(3): 919-73. |
[2] | 缪月娥, 刘天西. 基于静电纺丝技术的多级结构聚合物纳米纤维复合材料的研究进展[J]. 高分子学报, 2012(8): 801-811. |
MIAO Yuee, LIU Tianxi. Recent progress in hierarchically organized polymer nanocomposites based on electrospun nanofibers[J]. Acta Polymerica Sinica, 2012(8): 801-811. | |
[3] | 李玛莎, 郑元生, 辛斌杰, 等. 多级纳米纤维成型机理的研究进展[J]. 印染助剂, 2020, 37(5): 14-19. |
LI Masha, ZHENG Yuansheng, XIN Binjie, et al. Research development of formation mechanism of hierarchical structure nanofibers[J]. Textile Auxiliaries, 2020, 37(5): 14-19. | |
[4] | WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtra-tion[J]. Journal of Colloid & Interface Science, 2015, 441: 121-129. |
[5] |
GAO J, SONG X, HUANG X, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science, 2018, 439: 394-404.
doi: 10.1016/j.apsusc.2018.01.013 |
[6] |
HE C, HUANG Z, HAN X, et al. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery[J]. Journal of Macromolecular Science, 2006, 45(4): 515-524.
doi: 10.1080/00222340600769832 |
[7] | 赵伟, 王劭妤, 卫志美, 等. 空气过滤用聚芳硫醚砜/纳米二氧化硅复合静纺纳米纤维膜的制备及应用[J]. 高分子材料科学与工程, 2020, 36(10): 144-151. |
ZHAO Wei, WANG Shaoyu, WEI Zhimei, et al. Preparation of electro-spun polyaryl sulfone/nano silica composite nanofibrous membranes for air filtration[J]. Polymer Materials Science and Engineering, 2020, 36(10): 144-151. | |
[8] |
ALIHEIDARI N, ALIAHMAD N, AGARWAL M, et al. Electrospun nanofibers for label-sree sensor applic-ations[J]. Sensors, 2019.DOI: 10.3390/s19163587.
doi: 10.3390/s19163587 |
[9] | 刘兆麟, 岳承明, 张威. 静电纺聚乳酸串珠纤维的药物缓释性能[J]. 国际纺织导报, 2020, 48(10): 10-12,17. |
LIU Zhaolin, YUE Chengming, ZHANG Wei. Electrospun bead-on-string PLA nanofibers for sustained drug release[J]. Meiliand China, 2020, 48(10): 10-12,17. | |
[10] |
ZHU L, ZAAROUR B, JIN X. Unexpectedly high oil cleanup capacity of electrospun poly (vinylidene fluoride) fiber webs induced by spindle porous bowl like beads[J]. Soft Materials, 2019. DOI: 10.1080/1539445X.2019.1614060.
doi: 10.1080/1539445X.2019.1614060 |
[11] |
AMIRAH M A, KHAIRUNNISA M P, ATIQAH S N, et al. Electrospinning of PLA with DMF: effect of polymer concentration on the bead diameter of the electrospun fibre[J]. Materials Science and Engineering, 2020.DOI: 10.1088/1757-899X/778/1/012087.
doi: 10.1088/1757-899X/778/1/012087 |
[12] |
CLASEN C, EGGERS J, FONTELOS M A, et al. The beads-on-string structure of viscoelastic threads[J]. Journal of Fluid Mechanics, 2006, 556(556): 283-308.
doi: 10.1017/S0022112006009633 |
[13] |
WENDERPTT J K, XUAN D B, GREEN P F. Morphological design strategies to tailor out-of-plane charge transport in conjugated polymer systems for device applications[J]. Physical Chemistry Chemical Physics, 2021, 23(48): 27076-27102.
doi: 10.1039/D1CP02476K |
[14] |
ZHENG Y S, XIN B J, LI M S. Model development and validation of electrospun jet formation[J]. Textile Research Journal, 2019, 89(11): 2177-2186.
doi: 10.1177/0040517518786280 |
[15] |
ZHENG Y S, MENG N, XIN B J. Effects of jet path on electrospun polystyrene fibers[J]. Polymers, 2018.DOI: 10.3390/polym10080842.
doi: 10.3390/polym10080842 |
[16] |
ZHENG Y S, SHENG X, ZENG Y C. Electric field distribution and jet motion in electrospinning process: from needle to hole[J]. Journal of Materials Science, 2013, 48(19): 6647-6655.
doi: 10.1007/s10853-013-7465-8 |
[17] | 成惠斌, 钱庆荣, 陈建福. 高性能自增强聚乙烯复合材料的研究进展[J]. 精细石油化工进展, 2020, 21(5): 31-39. |
CHENG Huibin, QIAN Qingrong, CHEN Jianfu. Progress of research on high performance self-enhancement polyethylene composites[J]. Advance in Fine Petrochemicals, 2020, 21(5): 31-39. |
[1] | 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18. |
[2] | 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27. |
[3] | 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35. |
[4] | 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78. |
[5] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33. |
[6] | 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63. |
[7] | 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21. |
[8] | 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15. |
[9] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[10] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[11] | 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215. |
[12] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[13] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[14] | 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28. |
[15] | 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36. |
|