纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 73-78.doi: 10.13475/j.fzxb.20211002406

• 纺织工程 • 上一篇    下一篇

聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能

周泠卉1,2, 曾佩1,2, 鲁瑶3, 付少举1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.浙江药科职业大学 医疗器械学院, 浙江 宁波 315000
  • 收稿日期:2021-10-13 修回日期:2022-06-10 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 付少举(1992—),男,讲师,博士。主要研究方向为生物医用纺织品。E-mail:sjfu@dhu.edu.cn
  • 作者简介:周泠卉(1999—),女,硕士。主要研究方向为功能纺织品。

Study on composite acoustic material of polyvinyl alcohol nanofiber membrane and Milano rib knit fabric

ZHOU Linghui1,2, ZENG Pei1,2, LU Yao3, FU Shaoju1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Medical Instruments Institute, Zhejiang Pharmaceutical Vocational University, Ningbo, Zhejiang 315000, China
  • Received:2021-10-13 Revised:2022-06-10 Published:2023-03-15 Online:2023-04-14

摘要:

为探究针织物基复合吸声材料在降低噪声方面的可应用性,通过制备聚乙烯醇纳米纤维膜与罗纹空气层织物复合材料,研究其吸声及其它基本性能,采用正交试验法对影响材料声学性能的因素进行分析,通过对实验数据进行极差分析,探究该材料可用于吸声的最佳参数。结果表明:复合材料吸声性能的影响因素从大到小依次为:覆膜情况、密度盘刻度、纱线种类;当密度盘刻度为2、毛/腈(50/50)混纺纱覆膜的情况下,复合材料的吸声效果达到最佳,平均吸声系数高于0.3,可用作吸声材料;聚乙烯醇纳米纤维膜的增加对织物吸声性能有很大改善;织物的吸声系数随着织物密度的增加而提高。

关键词: 罗纹空气层织物, 聚乙烯醇, 吸声性能, 静电纺丝, 复合材料

Abstract:

Objective Noise pollution is harmful to people's daily life and health. Knitted materials have the characteristics of porous structure, high machinability and softness, which have research significance for sound absorption and noise reduction. According to research, polyvinyl alcohol(PVA)nanofiber membrane has excellent sound absorption performance in the low and middle-frequency band, which may be complementary to the knitted textiles. In order to verify the effectiveness of knitted fabric-based composite sound-absorbing materials in absorbing noise, we explored the sound absorption performance and other fundamental characteristics of composite material of PVA nanofiber membrane and Milano rib knit in this paper.

Method A wool/acrylic fiber (50/50) blended yarn and a 100% wool yarn were used to produce the Milano rib knitted fabrics, whose linear density is 35 tex×2 and is 42 tex ×4 respectively. PVA nanofiber membrane is prepared by the electrospinning method. By placing the knitted fabric on the receiving plate in the electrospinning device, the PVA membrane was directly formed on the knitted fabric, creating the acoustic material. Three factors that may affect the acoustic characteristics i.e., fabric density, yarn types, and use of membrane were examined by orthogonal experiment and range analysis.

Results Eight samples are tested and the test results are summarized (Fig.3). The average sound absorption coefficients of each sample at medium and low frequency (250-1 600 Hz) and high frequency (2 000-6 300 Hz) are compared. The sound absorption coefficients of the 8 samples in the middle and low-frequency band (250-1 600 Hz) are all less than 0.1, and there is no significant change. The sound absorption effect of sample No.3 is relatively better. In the high-frequency range (2 000-6 300 Hz), sample No. 1 has the best sound absorption effect, with the average sound absorption coefficient higher than 0.3, which can be used as sound absorption material for research, and the other samples have little difference in sound absorption effect. It can be seen that the factor that has the greatest impact on the sound absorption performance of the sample is the use of membrane, and the optimal combination of all factors is "density dial scale 2, wool/acrylic fiber (50/50) blended yarn and covering membrane". Multiple groups of data are obtained by multiple measurements of each fabric, and the average value is obtained (Fig.5). The samples are arranged in the order of average permeability from high to low, which is 7 > 6 > 8 > 4 > 5 > 2 > 3 > 1. The range analysis method is used for further study of the influence level of density dial scale, yarn type, and the membrane covering or not on fabric breathability, and by comparing the value of R', yarn type demonstrates the greatest influence on air permeability(Tab.6). When the level of the three factors is "density dial scale 4, wool yarn (100%), and not covering membrane", the fabric has the best air permeability. The thickness of each sample is not very different, so the influence on the sound absorption performance is not great(Fig.7 and Fig.8). The order of the weight of square meters from high to low is 5 > 3 > 2 > 1 > 8 > 6 > 7 > 4, indicating that sample No. 5 is the heaviest and sample No. 4 is the lightest. According to the areal density of the fabric, these 8 samples belong to medium thickness fabric.

Conclusion This paper explores the application of composite material combining nanofiber membrane and knitted fabric in the field of sound absorption and noise reduction. The results show that the composite material has a certain effect on sound absorption and reaches the standard of sound absorption material. This research work also investigates the optimum parameters for sound absorption of the material. The results show that the influence factors of the sound absorption performance of the composite are membrane covering or not, density dial scale, and yarn type in descending order. The optimum combination parameters are found to be density dial scale 2, wool/acrylic fiber (50/50) blended yarn, and covering membrane. The average sound absorption coefficient of the material is over 0.3 so it can be used as acoustic material. The sound absorption performance of the fabric is greatly improved by the PVA nanofiber membrane and the sound absorption coefficient of the fabric increases from the increase in the fabric density.

Key words: Milano rib knit fabric, polyvinyl alcohol, sound absorption property, electrospinning, composite

中图分类号: 

  • TS181.8

图1

罗纹空气层组织编织图"

表1

织物密度测试结果"

密度盘
刻度
织物用
纱线编号
横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
2 毛/腈混纺纱 17 30
纯羊毛纱 18 30
3 毛/腈混纺纱 15 26
纯羊毛纱 17 28
4 毛/腈混纺纱 14 25
纯羊毛纱 17 25
5 毛/腈混纺纱 14 23
纯羊毛纱 16 23

表2

试验因素水平表"

水平 密度盘刻度 纱线种类 覆膜情况
1 2 毛/腈混纺纱 覆膜
2 3 纯羊毛纱 不覆膜
3 4
4 5

表3

正交试验设计表"

试验号 因素1 因素2 因素3 因素4 因素5
1 1 1 1 1 1
2 1 1 2 2 3
3 1 2 1 2 2
4 1 2 2 1 4
5 2 1 1 2 4
6 2 1 2 1 2
7 2 2 1 1 3
8 2 2 2 2 1

表4

改造后的正交试验设计表"

试样编号 密度盘刻度 纱线种类 覆膜情况
1 2 毛/腈混纺纱 覆膜
2 4 纯羊毛纱 覆膜
3 3 毛/腈混纺纱 不覆膜
4 5 纯羊毛纱 不覆膜
5 5 毛/腈混纺纱 覆膜
6 3 纯羊毛纱 覆膜
7 4 毛/腈混纺纱 不覆膜
8 2 纯羊毛纱 不覆膜

图2

静电纺丝示意图"

图3

各试样吸声系数对比图"

表5

吸声系数影响因素极差分析表"

项目 水平 密度盘刻度 纱线种类 覆膜情况
K 1 0.79 0.89
2 0.53 0.75 0.65
3 0.38
4 0.33
5 0.30
Kav 1 0.20 0.22
2 0.26 0.19 0.16
3 0.19
4 0.17
5 0.15
最佳水平 2 1 1
R 0.11 0.01 0.06
水平数量 4 2 2
每水平重复数r 2.0 4.0 4.0
折算系数d 0.45 0.71 0.71
R' 0.07 0.01 0.08

图4

织物透气性测试结果"

表6

透气性影响因素极差分析表"

项目 水平 密度盘刻度 纱线种类 覆膜情况
K 1 5 159.87 5 253.60
2 2 635.02 6 357.64 6 263.91
3 2 905.17
4 3 274.64
5 2 702.68
Kav 1 1 289.97 1 313.40
2 1 317.51 1 589.41 1 565.98
3 1 452.59
4 1 637.32
5 1 351.34
最佳水平 4 2 2
R 319.81 299.44 252.58
水平数量 4 2 2
每水平重复数r 2.0 4.0 4.0
折算系数d 0.45 0.71 0.71
R' 203.53 425.21 358.66

图5

织物厚度和面密度测试结果"

[1] 唐兆民. 噪声污染的现状、危害及其治理[J]. 生态经济, 2017, 33(1): 6-9.
TANG Zhaomin. Present situation, harm and control of noise pollution[J]. Ecological Economy, 2017, 33(1): 6-9.
[2] 崔靖晗. 有关夜间噪声污染行政执法难的问题治理[J]. 区域治理, 2019(52): 105-107.
CUI Jinghan. Management of difficult problems in administrative law enforcement of nighttime noise pollution[J]. Regional Governance, 2019(52): 105-107.
[3] 周甘霖, 李红霞. 纬编间隔织物及其吸声性能的研究[J]. 产业用纺织品, 2014, 32(10): 37-40.
ZHOU Ganlin, LI Hongxia. Investigation of sound absorption property of weft knitted spacer fabrics[J]. Technical Textiles, 2014, 32(10): 37-40.
[4] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
PENG Min, ZHAO Xiaoming. Advances in the fiber-based sound-absorbing materials[J]. Materials Reports, 2019, 33(21): 3669-3677.
[5] KALINOVÁ K. Nanofibrous Resonant membrane for acoustic applications[J]. Journal of Nanomaterials, 2011. DOI: 10.1155/2011/265720.
doi: 10.1155/2011/265720
[6] YOUNGJOO N, TOVE Agnhage, GILSOO Cho. Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption coefficients[J]. Fibers and Polymers, 2012, 13(10): 1348-1352.
doi: 10.1007/s12221-012-1348-5
[7] 龙海如. 针织学[M]. 北京: 中国纺织出版社, 2008: 2-3.
LONG Hairu. Knitting science[M]. Beijing: China Textile & Apparel Press, 2008: 2-3.
[8] 刘焕. 改性PVA纳米纤维膜复合材料的制备及吸声性能探究[D]. 苏州: 苏州大学, 2019: 3-5.
LIU Huan. Preparation and sound absorption properties of modified PVA nanofiber membrane composites[D]. Suzhou: Soochow University, 2019: 3-5.
[9] 李好义, 许浩, 陈明军, 等. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
LI Haoyi, XU Hao, CHEN Mingjun, et al. Research progress of noise reduction by nanofibers[J]. Journal of Textile Research, 2020, 41(11): 168-173.
[10] 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017, 38(3): 67-71.
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile Research, 2017, 38(3): 67-71.
[11] 张建祥, 王桂芝, 崔金德, 等. 纺织品透气性测试[J]. 印染, 2009(23): 42-44.
ZHANG Jianxiang, WANG Guizhi, CUI Jinde, et al. Testing of air permeability of textiles[J]. China Dyeing & Finishing, 2009(23): 42-44.
[12] MANISH Raj, SHAHAB Fatima, NARESH Tandon. A study of areca nut leaf sheath fibers as a green sound-absorbing material[J]. Applied Acoustics, 2020. DOI: 10.1016/j.apacoust.2020.107490.
doi: 10.1016/j.apacoust.2020.107490
[1] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[2] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[3] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[4] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[5] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[6] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
[7] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[8] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[9] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[10] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[11] 段亚弟, 谢巍杰, 邱海鹏, 王晓猛, 王岭, 张典堂, 钱坤. 界面层对三维机织角联锁SiCf/SiC复合材料断裂韧性的影响[J]. 纺织学报, 2023, 44(01): 119-128.
[12] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[13] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[14] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[15] 吕丽华, 李臻. 废弃玉米秸秆的结构特征及其吸声性能[J]. 纺织学报, 2022, 43(12): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!