纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 88-95.doi: 10.13475/j.fzxb.20220702308

• 纺织工程 • 上一篇    下一篇

一体化机械编织食管覆膜支架的力学性能与编织参数关系

姜博宸1,2, 王玥1,2, 王富军1,2, 林婧1,2, 郭爱军3, 王璐1,2, 关国平1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.广东富江医学科技有限公司, 广东 珠海 519090
  • 收稿日期:2022-07-08 修回日期:2022-10-08 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 关国平(1980—),男,教授,博士。主要研究方向为生物医用纺织品的制备和评价。E-mail:ggp@dhu.edu.cn
  • 作者简介:姜博宸(1998—),男,硕士生。主要研究方向为食管覆膜支架生物力学性能评价。

Correlation of braiding parameters and mechanical properties of mechanically braided integrated esophageal covered stents

JIANG Bochen1,2, WANG Yue1,2, WANG Fujun1,2, LIN Jing1,2, GUO Aijun3, WANG Lu1,2, GUAN Guoping1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Guangdong UShare Medical Inc., Zhuhai, Guangdong 519090, China
  • Received:2022-07-08 Revised:2022-10-08 Published:2023-03-15 Online:2023-04-14

摘要:

运用一体化编织技术,通过调控镍钛合金丝直径、编织目数(PPI)和材料配比,制备了一系列一体化编织食管覆膜支架,探讨了以上编织工艺参数与食管覆膜支架之间的构效关系。结果表明:镍钛合金丝直径是影响食管覆膜支架径向压缩强力的主要参数。本文研究范围内,镍钛合金丝直径越大,覆膜支架的径向支撑性越好,但较大的镍钛合金丝直径会降低覆膜支架的柔顺性,故较合适的镍钛合金丝直径为0.20~0.22 mm。PPI对覆膜支架的径向支撑性和柔顺性影响较小,但仍可见PPI增大时,覆膜支架的径向压缩强力呈增大趋势,但当PPI为40时,覆膜支架弯曲时的直径减小率最大,故较优的PPI为35。材料配比本质上是指覆膜支架中镍钛合金丝的含量,材料配比大,镍钛合金丝的含量高,覆膜支架的径向压缩强力大,直径减小率小,然而,覆膜支架的弹性回直力增大,即柔顺性降低;因此,较合适的材料配比为1:3。

关键词: 食管狭窄, 食管覆膜支架, 编织工艺, 力学性能, 一体化

Abstract:

Objective Minimally invasive intervention with esophageal covered stents is an important means of palliative treatment of esophageal stenosis. However, adverse events of conventional esophageal covered stents have often been reported in publications recently. A new mechanically braided integrated esophageal covered stent is designed and expected to overcome the shortcomings of the existing esophageal covered stent and become the next generation of innovative products, but its basic research is not sufficient.

Method A series of integrated esophageal covered stents were braided using integrated braiding technology by adjusting the point per inch (PPI), the diameter of nickel titanium alloy wire and the number ratio of the wire to PET yarns. Moreover, the mechanical properties and compliance of these covered stents were systematically studied, mainly discussing the structure-property relationship between the above braiding parameters and the radial compression force, elastic recovery rate, stress relaxation rate, diameter reduction rate and elastic straightening force of the covered stents.

Results The diameter of nickel titanium alloy wire is the main parameter affecting the radial compression force of the esophageal covered stent. Within the scope of this study, the larger the diameter of nickel titanium alloy wire, the better the radial support of the covered stent. Compared with 0.24 mm nickel titanium alloy wire, 0.20 mm and 0.22 mm nickel titanium alloy wires can meet the radial support force required for esophageal stent, and a larger nickel titanium alloy wire diameter reduced the flexibility of the covered stent (Fig.7), so the suitable nickel titanium alloy wire diameter should be 0.20-0.22 mm. PPI has less effect on the radial support and compliance of the covered stent (Fig.4), that when the PPI increases, the radial support of the covered stent is better. When the PPI is 40, the diameter reduction rate increases when it is bent (Fig.7), so the optimal PPI should be 35. The number ratio of the wire essentially refers to the content of nickel titanium alloy wire in the covered stent. The ratio is large, the content of nickel titanium alloy wire is high, and the radial support force of the covered stent is high (Fig.4). However, at the same time, that the diameter reduction rate and elastic straightening force of the covered stent increase, that is, the compliance decreases (Fig.7 and Fig.8). Therefore, the more suitable number ratio should be 1:3. It is comprehensively considered from the perspective of the properties of radial support, bending compliance and lumen conformation of mechanically braided integrated esophageal covered stent, that its optimal parameter combination included the diameter of nickel titanium alloy wire were 0.20 mm and 0.22 mm, PPI was 35, and the number ratio of the wire was 1:3.

Conclusion Correlations of braiding parameters and mechanical properties of mechanically braided integrated esophageal covered stents have been established by designing, braiding and characterizing a series of esophageal covered stents. Disclosure of the structure-property relationship may extremely facilitate and push the development of mechanically braided integrated esophageal covered stents, since braiding machines for producing large diameter ones are customized and high-cost. On the other hand, clinical needs for the mechanically braided integrated esophageal covered stents are versatile and personalized. Therefore, it is facilitated to design and produce customized covered stents for varying patients based on the results of the present work. If one needs a strong support covered stent, the first influencing factor considered should be the diameter of nickel titanium alloy wire. Likewise, if the permeability is firstly considered, then PPI should be selected to adjust first. The number ratio mainly affects the flexibility of the covered stents. To sum up, this study may provide an experimental basis for accelerating the commercialization of the mechanically braided integrated esophageal covered stent. It is expected that this study can provide beneficial reference for the further development of integrated esophageal covered stent products, and promote the personalized and precise treatment of esophageal covered stent in clinical practice.

Key words: esophageal stenosis, esophageal covered stent, braiding, mechanical property, integrated

中图分类号: 

  • TS101.2

表1

食管覆膜支架编织工艺参数"

试样编号 材料配比 镍钛合金丝直径/mm PPI
1 1:2 0.15 30
2 1:2 0.15 35
3 1:2 0.15 40
4 1:2 0.18 30
5 1:2 0.18 35
6 1:2 0.18 40
7 1:2 0.20 30
8 1:2 0.20 35
9 1:2 0.20 40
10 1:3 0.18 30
11 1:3 0.18 35
12 1:3 0.18 40
13 1:3 0.20 30
14 1:3 0.20 35
15 1:3 0.20 40
16 1:3 0.22 30
17 1:3 0.22 35
18 1:3 0.22 40
19 1:5 0.20 30
20 1:5 0.20 35
21 1:5 0.20 40
22 1:5 0.22 30
23 1:5 0.22 35
24 1:5 0.22 40
25 1:5 0.24 30
26 1:5 0.24 35
27 1:5 0.24 40

图1

食管覆膜支架的径向支撑性能测试照片"

图2

弯曲测试示意图"

图3

弹性回直力测试示意图"

图4

食管覆膜支架径向压缩强力"

图5

不同编织工艺参数的食管覆膜支架的弹性回复率"

图6

不同编织工艺参数的食管覆膜支架的应力松弛率"

图7

不同编织工艺参数的食管覆膜支架的直径减小率"

图8

不同编织工艺参数的食管覆膜支架的弹性回直力"

[1] 兆天欣. 食管支架置入的临床适用性及其特点[J]. 中国组织工程研究与临床康复, 2008, 12(52): 10335-10338.
ZHAO Tianxin. Clinical applicability and features of esophageal stent implantation[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(52): 10335-10338.
[2] SENTURK M, CAKIR M, YILDIRIM M A, et al. Stent applications for palliative treatment in advanced stage esophageal cancers[J]. Gastroenterology Research and Practice, 2021. DOI: 10.1155/2021/8034948.eCollection.
doi: 10.1155/2021/8034948.eCollection
[3] GODIN A, LIBERMAN M. The modern approach to esophageal palliative and emergency surgery[J]. Ann Transl Med, 2021, 9(10): 905.
doi: 10.21037/atm.2020.03.107 pmid: 34164539
[4] DIDDEN P, SPAANDER M, BRUNO M J. Esophageal stents in malignant and benign disorders.[J]. Curr Gastroenterol Rep, 2013, 15(4): 1-9.
[5] HINDY P, HONG J, LAM TSAI Y, et al. A comprehensive review of esophageal stents.[J]. Gastroenterology & Hepatology, 2012, 8(8): 526.
[6] LAASCH H U, MILWARD G D, EDWARDS D W. 'Radial force' of colonic stents: a parameter without consistency, definition or standard[J]. International Journal of Gastrointestinal Intervention, 2020, 9(3): 99-105.
doi: 10.18528/ijgii200005
[7] KANG Y. A review of self-expanding esophageal stents for the palliation therapy of inoperable esophageal malignancies[J]. BioMed Research International, 2019, 2019(8): 1-11.
[8] 倪晓宇, 赵海霞, 殷红莲, 等. 端部形状对支架-食管耦合系统力学行为的影响[J]. 医用生物力学, 2018, 33(2): 101-107.
NI Xiaoyu, ZHAO Haixia, YIN Honglian, et al. Influence of end shapes on biomechanical behavior of the stent-esophagus coupling system[J]. Journal of Medical Biomechanics, 2018, 33(2): 101-107.
[9] VERMEULEN B D, SIERSEMA P D. Esophageal stenting in clinical practice: an overview[J]. Current Treatment Options in Gastroenterology, 2018, 16(2): 260-273.
doi: 10.1007/s11938-018-0181-3 pmid: 29557070
[10] 李尧. 食管支架的可疑不良事件分析[J]. 中国医疗器械杂志, 2017, 41(1): 48-62.
LI Yao. Analysis of suspected adverse events of esophageal stents[J]. Chinese Journal of Medical Instrumentation, 2017, 41(1): 48-62.
[11] PARK J G, JUNG G S, OH K S, et al. Double-layered PTFE-covered nitinol stents: experience in 32 patients with malignant esophageal strictures[J]. Cardiovasc Intervent Radiol, 2010, 33(4): 772-779.
doi: 10.1007/s00270-009-9718-0 pmid: 19787398
[12] YANG K, CAO J, YUAN T W, et al. Silicone-covered biodegradable magnesium stent for treating benign esophageal stricture in a rabbit model[J]. World Journal of Gastroenterology, 2019, 25(25): 3207-3217.
doi: 10.3748/wjg.v25.i25.3207 pmid: 31333312
[13] PARK S C, PARK N S, KIM D G, et al. Physical properties of covered stent in gastric acid environment: in vitro study[J]. Polymer Korea, 2014, 38(3): 351-357.
doi: 10.7317/pk.2014.38.3.351
[14] 王璐, 邹秋华, 林婧, 等. 一种编织型一体成型血管覆膜支架及其制备方法:104689379A[P]. 2015-02-15.
WANG Lu, ZOU Qiuhua, LIN Jing, et al. Integrated braided vascular covered stent and its preparation method:104689379A[P]. 2015-02-15.
[15] 邹秋华. 一体化编织型血管支架的制备与力学性能研究[D]. 上海: 东华大学, 2016: 25-30.
ZOU Qiuhua. Preparation and mechanical performance of new integrated braided stent grafts[D]. Shanghai: Donghua University, 2016: 25-30.
[16] 孙世博, 关国平, 王璐, 等. 一体化编织食管覆膜支架制备及力学性能[J]. 东华大学学报(自然科学版), 2021, 47(6): 37-43.
SUN Shibo, GUAN Guoping, WANG Lu, et al. Preparation and mechanical performance of braided hybrid esophageal stent grafts[J]. Journal of Donghua University (Natural Science), 2021, 47(6): 37-43.
[17] 王芳, 俞鑫, 王文祖. 人工血管支架的编织工艺与表面性能的研究[J]. 山东纺织科技, 2006(4): 51-54.
WANG Fang, YU Xin, WANG Wenzu. Study on braiding technology and surface properties of artificial vascular stent[J]. Shandong Textile Science and Technology, 2006(4): 51-54.
[18] 赵帆. 双重可控式编织自增强型可降解血管支架的设计制备及构效关系[D]. 上海: 东华大学, 2019: 23-24.
ZHAO Fan. Design and fabrication of dual controllable braided self-reinforced bioresorbable cardiovascular stent and its structure-function relationship analysis[D]. Shanghai: Donghua University, 2019: 23-24.
[19] 邹秋华, 林婧, 王璐, 等. 一体化编织型血管覆膜支架的压缩性能[J]. 东华大学学报(自然科学版), 2017, 43(1): 27-30.
ZOU Qiuhua, LIN Jing, WANG Lu, et al. Compression performance of braided integrated stent grafts[J]. Journal of Donghua University (Natural Science), 2017, 43(1): 27-30.
[20] 隋纹龙, 陈南梁. 编织型医用管腔内支架的编织工艺研究[J]. 产业用纺织品, 2013, 31(10): 15-18.
SUI Wenlong, CHEN Nanliang. Study on braiding parameters of braided medical intraluminal stent[J]. Technical Textiles, 2013, 31(10): 15-18.
[21] TOKUDA T, SHOMURA Y, TANIGAWA N, et al. Mechanical characteristics of composite knitted stents[J]. Cardiovasc Intervent Radiol, 2009, 32(5): 1028-1032.
doi: 10.1007/s00270-009-9622-7 pmid: 19506947
[22] 付文宇, 李立新, 乔爱科. 编织支架弯曲变形时扁平现象的数值模拟研究[J]. 北京生物医学工程, 2020, 39(5): 455-461.
FU Wenyu, LI Lixin, QIAO Aike. Numerical simulation of flattening phenomenon in braided stent during bending deformation[J]. Beijing Biomedical Engineering, 2020, 39 (5): 455-461.
[23] 关颖. 血管覆膜支架生物力学:径向顺应性和纵向柔顺性的动态精细化研究[D]. 上海: 东华大学, 2018: 85-93.
GUAN Ying. Biomechanics of stent-graft: study on dynamic radial compliance and longitudinal flexibility[D]. Shanghai: Donghua University, 2018: 85-93.
[24] ISAYAMA H, NAKAI Y, TOYOKAWA Y, et al. Measurement of radial and axial forces of biliary self-expandable metallic stents[J]. Gastrointestinal Endoscopy, 2009, 70(1): 37-44.
doi: 10.1016/j.gie.2008.09.032 pmid: 19249766
[25] PARIS F, JARROD K, MOHA Mmad A, et al. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of esophageal cancers[J]. Biomaterials Science, 2020, 8: 6625-6636.
doi: 10.1039/D0BM01355B
[26] BEZROUK A, HOSSZU T, HROMADKO L, et al. Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: in vitro force relaxation and its clinical relevance[J]. PLoS ONE, 2020. DOI: 10.1371/journal.pone.0235842.
doi: 10.1371/journal.pone.0235842
[27] JIANG J, MIAO Z, WU W B, et al. In vitro evaluation of the radial and axial force of self-expanding esophageal stents[J]. Endoscopy, 2013, 45(12): 997-1005.
doi: 10.1055/s-0033-1344985 pmid: 24288220
[1] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[2] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[3] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[4] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[5] 郭伟娜, 辛三法, 胡文锋, 高彦涛. 碳化硅纤维预制体编织损伤特性研究[J]. 纺织学报, 2022, 43(12): 69-74.
[6] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[7] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[8] 路丽莎, 蒋高明. 全成形针织服装三维款式向二维样板转化方法[J]. 纺织学报, 2022, 43(10): 133-140.
[9] 徐艳华, 袁新林. 纸样技术在全成形斜裙编织工艺中的应用[J]. 纺织学报, 2022, 43(10): 141-147.
[10] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[11] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[12] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[13] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[14] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[15] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!