纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 100-107.doi: 10.13475/j.fzxb.20220505908

• 纺织工程 • 上一篇    下一篇

基于预/主刺协同的针刺织物力学性能提升方法

陈小明1,2,3, 任志鹏2,3, 郑宏伟2,3, 吴凯杰1,2, 苏星兆2,3, 陈利1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.天津工业大学 机械工程学院, 天津 300387
  • 收稿日期:2022-05-19 修回日期:2022-10-31 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 陈利(1968—),男,教授,博士。主要研究方向为纺织复合材料。E-mail:chenli@tiangong.edu.cn
  • 作者简介:陈小明(1984—),男,高级实验师,博士。主要研究方向为纺织机器人装备及纺织复合材料。
  • 基金资助:
    天津市教委科研计划项目(2018ZD13);先进功能复合材料技术重点实验室基金项目(6142906210406)

A method for improving mechanical properties of needled fabrics based on synergy of pre-needling and main needling

CHEN Xiaoming1,2,3, REN Zhipeng2,3, ZHENG Hongwei2,3, WU Kaijie1,2, SU Xingzhao2,3, CHEN Li1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
    3. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-05-19 Revised:2022-10-31 Published:2023-04-15 Online:2023-05-12

摘要:

现有的针刺工艺常采用提高针刺密度来提高针刺织物的层间剥离性能,但同时也加剧了基布的纤维损伤,导致织物的面内拉伸强度下降,提出一种新的基于预/主刺协同的针刺织物力学性能提升方法,可同时实现层间剥离性能和面内拉伸性能的提升。基于预/主刺协同针刺新工艺,制备了针刺织物,开展了织物结构表征、层间剥离性能测试和面内拉伸性能研究,并同传统的针刺工艺进行对比。研究结果表明:相同总针刺密度的条件下,预/主刺协同针刺新工艺极大的提高了针刺纤维束的含量,增幅达到63.1%~93.1%,且预/主刺协同针刺织物的针刺纤维束呈现较粗、较长的特征;层间剥离性能提高了56.16%~58.46%,面内拉伸性能增加了8.8%~15.7%。这是由于预刺工艺生成了预制孔,利于后续主刺工艺将更多短纤维带入厚度方向形成针刺纤维束;同时,预/主刺协同针刺工艺采用针刺密度减半、针刺遍数翻倍、原位针刺的思路,有效的减小了针刺损伤区域面积,提高了针刺织物的面内拉伸强度。

关键词: 针刺技术, 预制体, 针刺织物, 拉伸性能, 剥离性能

Abstract:

Objective The purpose of this paper was to study a needling process, proposed the concept of needling prefabricated holes and the synergistic needling method of prefabrication and needling, and strengthened the connection of needled bundles through the synergistic method of pre-needling and main needling, while reducing the needled on the fabric surface. The damage of the inner fibers could improve the interlaminar peeling performance and the in-plane tensile performance of the needled fabric at the same time, which provided a new idea and method for the preparation of high-performance needled fabrics.
Method In this paper, carbon fiber non woven fabric and carbon fiber felt were used to prepare needled preforms in the form of carbon cloth/felt lamination. Under the same conditions, traditional needled fabrics and pre-needling and main needling synergistic needled fabrics were prepared using the traditional needling process and the pre-needling and main needling synergistic process. The mechanical properties of the two fabrics were characterized through a series of experiments, and the strengthening principle of the pre-needling and main needling synergistic process was revealed.
Results In the pre-needling and main needling synergistic process, pre-needling formed prefabricated holes, and the main needling was in situ needled at the pre-needling point. The synergistic effect of the two played a role in strengthening interlaminar connection and reducing in-plane fiber damage. The interlaminar peeling properties of the two were characterized by performing the interlaminar peeling experiment on the prepared needled fabrics. The interlaminar peeling property of the latter under different total needling densities were improved by 56.16%-58.46% compared with the former(Fig. 6). The 3-D profiler was used to observe the fiber bundle morphology on the interlaminar peeling surface, and the fiber bundle volume was counted. It could be seen from interlaminar peeled fabric that the pre-needling and main needling synergistic process had less shearing of the inner fibers, and less and larger needling holes were formed. The needled fabric bundles of the pre-needling and main needling synergistic needled fabric were thicker and longer and the distribution were sparse; the needled fabric bundles of the traditional needled fabric were shorter and thinner, but the distribution were denser. Compared with the traditional needled fabrics, the maximum fiber bundle volume of the interlaminar peeling observation surface of the synergistic needled fabrics increased by 349.1%-445.1%, and the total fiber bundle volume increased by 63.1%-93.2%(Fig. 9). Therefore, it could be seen that the pre/main pre-needling and main needling synergistic process increases the needled fiber bundles brought in during the main needling process and reduced the damage to the fibers in the face through the pre-needling to form the needled prefabricated holes, and improved the interlaminar of the needled fabrics peel performance. Then, tensile experiments were performed on each layer of carbon cloth of the needled fabrics to characterize the in-plane tensile property. It could be seen that the in-plane tensile strength of the pre-needling and main needling synergistic needled fabrics was 8.8%-15.7% higher than that of the traditional needled fabrics. According to the previous analysis, synergistic needled fabrics could improve the in-plane tensile property of the fabric by reducing the shear damage of the in-plane fibers.
Conclusion The new synergistic process of pre-needling and main needling significantly improved the interlaminar peeling performance of needled fabrics. For the needled preforms prepared with different total needling densities, the interlaminar peeling strength of the synergistic needling process increased by 56.16%-58.46% compared with the traditional needled fabric; the transferred in-plane fiber content increased by 63.1%-93.1%, this was because the pre needling process generated pre-fabricated holes, which was beneficial to the subsequent main needling process to bring more short fibers into the thickness direction to form needled fabric bundles. The in-plane tensile property of the synergistic needled fabricss were improved by 8.8%-15.7%. This was because the synergistic needling process adopted the idea of halving the needling density, doubling the number of times of needling, and in-situ needling, which effectively reduced the area of the damaged area of needling and improved in-plane tensile strength of needled fabrics.

Key words: needling process, preform, needled fabric, tensile property, peel property

中图分类号: 

  • TS102

图1

针刺织物制备工艺"

表1

实验工艺参数"

试样
编号
针刺密度/
(针·cm-2)
针刺
遍数
累计针刺密
度/(针·cm-2)
1# 5 2 10
2# 10 1 10
3# 8 2 16
4# 16 1 16
5# 10 2 20
6# 20 1 20

图2

针刺轨迹模拟和针刺机器人"

图3

实验路线图"

图4

力学性能测试试样"

图5

不同试样层间剥离位移-载荷曲线图 3条曲线为同一试样制备3个实验样品进行3次实验所得。"

图6

层间剥离强度"

图7

不同试样层间剥离织物断口形貌图"

图8

不同试样针刺纤维束三维重构图"

图9

针刺纤维束体积"

图10

典型针刺纤维束形貌对比"

图11

典型拉伸位移-载荷曲线 3条曲线为同一试样制备3个实验样品进行3次实验所得。"

图12

拉伸强度"

[1] CHEN Xiaoming, CHEN Li, ZHANG Chunyan, et al. Three-dimensional needle-punching for composites: a review[J]. Composites Part a: Applied Science and Manufacturing, 2016, 85: 12-30.
doi: 10.1016/j.compositesa.2016.03.004
[2] 陈小明, 李晨阳, 李皎, 等. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(5): 185-192.
CHEN Xiaoming, LI Chenyang, LI Jiao, et al. Research progress of three-dimensional needling technology[J]. Journal of Textile Research, 2021, 42 (5): 185-192.
[3] 董九志, 腊鑫, 陈云军, 等. 针刺炭/炭坩埚预制体叠层炭布裁剪尺寸建模[J]. 天津工业大学学报, 2020, 39(1): 57-62.
DONG Jiuzhi, LA Xin, CHEN Yunjun, et al. Modeling of cutting size of laminated carbon cloth for needled carbon/carbon crucible preform[J]. Journal of Tiangong University, 2020, 39(1): 57-62.
[4] SU Junming, CUI H, LI R, et al. The structure and property of new needle carbon cloth C/C composite[J]. New Carbon Materials, 2000, 15(2): 11-15.
[5] LACOSTE M, LACOMBE A, JOYEZ P, et al. Carbon/carbon extendible nozzles[J]. Acta Astronautica, 2002, 50(6): 357-367.
doi: 10.1016/S0094-5765(01)00178-3
[6] CHEN T, LIAO J, LIU G, et al. Effects of needle-punched felt structure on the mechanical properties of carbon/carbon composites[J]. Carbon, 2003, 41(5): 993-999.
doi: 10.1016/S0008-6223(02)00445-1
[7] JI Alin, CUI Hong, LI Hejun, et al. Performance analysis of a carbon cloth/felt layer needled preform[J]. New Carbon Materials, 2011, 26(2): 109-116.
doi: 10.1016/S1872-5805(11)60070-X
[8] 刘宇峰, 俸翔, 王金明, 等. 高性能针刺碳/碳复合材料的制备与性能[J]. 无机材料学报, 2020, 35(10): 1105-1111.
doi: 10.15541/jim20190607
LIU Yufeng, FENG Xiang, WANG Jinming, et al. Preparation and properties of high-performance needled carbon/carbon composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1105-1111.
doi: 10.15541/jim20190607
[9] JIA Yongzhen, LIAO Dunming, Cui Hong, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials & Design, 2016, 104: 19-26.
[10] 崔鑫. 椭圆形刺针对基布损伤及滤料性能影响的研究[D]. 上海: 东华大学, 2015:24-29.
CUI Xin. The Effect of eliptical needle on the damage of base fabric and filter's performance[D]. Shanghai: Donghua University, 2015: 24-29.
[11] DU Peijian, CHEN Li, XIE Junbo, et al. Damage evaluation of quartz woven fabrics during needle punching process[J]. Journal of Industrial Textiles, 2020. DOI:10.1177/1528083720912985.
doi: 10.1177/1528083720912985
[12] 杜培健, 王心淼, 吕庆涛, 等. 针刺石英机织布损伤表征及针刺毡纤维分布取向的变化[J]. 复合材料学报, 2021, 38(1): 268-278.
DU Peijian, WANG Xinmiao, LÜ Qingtao, et al. Damage characterization of quartz woven fabric and change of the fiber distribution orientation of needle punched quartz fiber felt[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 268-278.
[13] 刘建军, 李铁虎, 郝志彪, 等. 针刺炭布/网胎复合织物中的纤维转移和损伤研究[J]. 炭素技术, 2008(5): 13-15.
LIU Jianjun, LI Tiehu, HAO Zhibiao, et al. Study on ficer transfer and damage of composite fabric made by needle punched carbon cloth and web[J]. Carbon Techniques, 2008(5): 13-15.
[14] 庄文俊. 在针刺毡制造过程中减少纤维损伤的方法[J]. 产业用纺织品, 2012, 30(1): 29-31.
ZHUANG Wenjun. Method of reducing fiber damage in the manufacturing process of needle-punched felt[J]. Technical Textiles, 2012, 30(1): 29-31.
[15] 曾月宁, 于宾, 赵晓明. 针刺参数对PAN预氧化纤维损伤和缠结程度的影响[J]. 成都纺织高等专科学校学报, 2017, 34(1): 69-73.
ZENG Yuening, YU Bin, ZHAO Xiaoming. Effects of acupuncture parameters on damage and entanglement degree of PAN preoxidized fibers[J]. Journal of Chengdu Textile College, 2017, 34(1): 69-73.
[16] 陈小明. 异型构件预制体机器人三维针刺成形轨迹规划与针刺模拟[D]. 天津: 天津工业大学, 2018:29-39.
CHEN Xiaoming. Trajectory planning and simulation of three-dimensional needle-forming for special-shaped component prefabricated robot[D]. Tianjing: Tiangong University, 2018:29-39.
[1] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[2] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[3] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
[4] 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(08): 76-83.
[5] 陈小明, 李晨阳, 李皎, 谢军波, 张一帆, 陈利. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(05): 185-192.
[6] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[7] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[8] 董九志, 宋宗建, 陈云军, 蒋秀明. 预制体缝合针稳定性分析及插刺机构改进设计[J]. 纺织学报, 2019, 40(10): 171-176.
[9] 王心淼, 陈利, 张典堂, 陈冬. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(02): 45-52.
[10] 孙颖 刘俊岭 郑园园 陈利 李嘉禄. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018, 39(02): 49-54.
[11] 孟超然 毕雪蓉 李佳蔚 郁崇文. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(02): 78-85.
[12] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[13] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[14] 房家惠 于伟东. 阻燃涤纶/芳纶/聚苯丙噁唑纤维三轴系复合纱的拉伸性能[J]. 纺织学报, 2017, 38(06): 28-32.
[15] 郭囊括 李丽辉 代方银 陈杨 敬凌霄. 柔性多轴向经编聚氨酯涂层织物的拉伸性能[J]. 纺织学报, 2016, 37(11): 59-063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!