纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 16-23.doi: 10.13475/j.fzxb.20220401908
ZHOU Tang, WANG Dengbing, ZHAO Lei, LIU Zuyi, FENG Quan()
摘要:
为开发一种新型纳米纤维材料用于催化降解抗生素废水,通过化学还原法在分散的细菌纤维素(BC)纳米纤维上沉积Au纳米颗粒,然后以此为载体采用真空辅助过滤方法形成均匀负载纳米WO3光催化材料的 BC/Au-WO3 纳米纤维膜。利用扫描电子显微镜和X射线衍射仪分析样品的组成结构和表观形貌,并对其进行紫外-可见光吸收光谱、交流阻抗、力学性能、光催化和光电催化测试。结果表明:BC纳米纤维可对WO3颗粒起到良好的柔性支撑作用,同时Au纳米颗粒的加入可降低材料的电荷转移阻抗并增强光吸收能力,从而提高其光催化降解性能;相对于单一的光催化反应,光电催化反应可加速降解反应并能提高降解率;在2.0 V附加电压和150 W氙灯下BC/Au-WO3在3 h 内对盐酸四环素的催化降解率可提高至78.4%。
中图分类号:
[1] |
CHEN Y, YANG J, ZENG L, et al. Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(8): 1401-1448.
doi: 10.1080/10643389.2020.1859289 |
[2] |
LOPES F C S M R, DA ROCHA M D G C, BARGIELA P, et al. Ag/TiO2 photocatalyst immobilized onto modified natural fibers for photodegradation of anthracene[J]. Chemical Engineering Science, 2020.DOI:10.1016/j.ces.2020.115939.
doi: 10.1016/j.ces.2020.115939 |
[3] | 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101. |
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205 |
|
[4] |
AL-GHAFRI B, LAU W J, AL-ABRI M, et al. Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment[J]. Journal of Water Process Engineering, 2019. DOI:10.1016/j.jwpe.2019.100970.
doi: 10.1016/j.jwpe.2019.100970 |
[5] |
SHAH N, UL-ISLAM M, KHATTAK W A, et al. Overview of bacterial cellulose composites: a multipurpose advanced material[J]. Carbohydr Polym, 2013, 98(2): 1585-1598.
doi: 10.1016/j.carbpol.2013.08.018 |
[6] |
DARIA C-J, ANNA $\mathrm{\ddot{Z}}$, ADAM J, et al. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings[J]. Carbohydrate Polymers, 2021. DOI:10.1016/j.carbpol.2020.117247.
doi: 10.1016/j.carbpol.2020.117247 |
[7] |
SHAO Y, FENG C P, DENG B W, et al. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant[J]. Nano Energy, 2019, 62: 620-627.
doi: 10.1016/j.nanoen.2019.05.078 |
[8] |
CHEN Y Y, WANG L H, SUN H Y, et al. Self-assembling TiO2 on aminated graphene based on adsorption and catalysis to treat organic dyes[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147889.
doi: 10.1016/j.apsusc.2020.147889 |
[9] |
YANG J, SONG G, ZHOU L, et al. Highly sensitively detecting tetramethylthiuram disulfide based on synergistic contribution of metal and semiconductor in stable Ag/TiO2 core-shell SERS substrates[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147744.
doi: 10.1016/j.apsusc.2020.147744 |
[10] |
BOYADJIEV S I, KERI O, BARDOS P, et al. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing[J]. Applied Surface Science, 2017, 424: 190-197.
doi: 10.1016/j.apsusc.2017.03.030 |
[11] |
LIU S, GAO C, LIU Y, et al. Synthesis and photoluminescence mechanism of porous WO3 and WO3/Fe2W3O12 composite materials[J]. Russian Journal of Physical Chemistry A, 2021, 95(13): 2699-2707.
doi: 10.1134/S0036024421130124 |
[12] |
FUKUMURA T, SAMBANDAN E, YAMASHITA H. Synthesis and VOC degradation ability of a CeO2/WO3 thin-layer visible-light photocatalyst[J]. Materials Research Bulletin, 2017, 94: 493-499.
doi: 10.1016/j.materresbull.2017.07.003 |
[13] |
MOHITE S V, GANBAVLE V V, RAJPURE K Y. Photoelectrochemical and photocatalytic activities of bilayered TiO2/Ga:WO3 photoelectrode by spray pyrolysis technique[J]. Materials Research Bulletin, 2017, 95: 491-496.
doi: 10.1016/j.materresbull.2017.06.043 |
[14] |
MEMON A A, ARBAB A A, PATIL S A, et al. Synthesis of solution processed f-CNT@Bi2S3 hybrid film coated linen fabric as a free-standing textile structured photo catalyst[J]. Applied Catalysis a-General, 2018, 566: 87-95.
doi: 10.1016/j.apcata.2018.06.015 |
[15] |
HU C, WANG M S, CHEN C H, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 580: 1-11.
doi: 10.1016/j.memsci.2019.03.012 |
[16] |
WANG Q Z, ZHENG L H, CHEN Y T, et al. Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of Rhodamine-B[J]. Journal of Alloys and Compounds, 2015, 637: 127-132.
doi: 10.1016/j.jallcom.2015.02.201 |
[17] |
DAS A, DAGAR P, KUMAR S, et al. Effect of Au nanoparticle loading on the photo-electrochemical response of Au-P25-TiO2 catalysts[J]. Journal of Solid State Chemistry, 2020. DOI:10.1016/j.jssc.2019.121051.
doi: 10.1016/j.jssc.2019.121051 |
[18] |
PENNINGTON A M, PITMAN C L, DESARIO P A, et al. Photocatalytic CO oxidation over nanoparticulate Au-modified TiO2 aerogels: the importance of size and intimacy[J]. ACS Catalysis, 2020, 10(24): 14834-14846.
doi: 10.1021/acscatal.0c03640 |
[19] |
MARTINS P, KAPPERT S, LE H N, et al. Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin[J]. Catalysts, 2020. DOI:10.3390/catal10020234.
doi: 10.3390/catal10020234 |
[20] |
WANG Z L, LAI L W, WANG Y C, et al. Preparation and enhanced photoelectrocatalytic properties of a three-dimensional TiO2-Au porous structure fabricated using superaligned carbon nanotube films[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31963-31975.
doi: 10.1016/j.ijhydene.2020.08.241 |
[21] |
ZHENG Z, NG Y H, TANG Y, et al. Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2020.128279.
doi: 10.1016/j.chemosphere.2020.128279 |
[22] |
MA B, YU N, XIN S, et al. Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2020.129242.
doi: 10.1016/j.chemosphere.2020.129242 |
[23] |
ZHOU T, ZHAO L, WU D S, et al. Uniformly assembled polypyrrole-covered bacterial cellulose/g-C3N4 flexible nanofiber membrane for catalytic degradation of tetracycline hydrochloride[J]. Journal of Water Process Engineering, 2022. DOI:10.1016/j.jwpe.2022.102775.
doi: 10.1016/j.jwpe.2022.102775 |
[24] | 于舒睿, 王蓟, 杨继凯, 等. WO3/NiWO4复合薄膜的制备及其光电化学性能[J]. 半导体电, 2022, 43(1): 137-142. |
YU Shurui, WANG Ji, YANG Jikai, et al. Preparation and photoelectrochemical properties of WO3/NiWO4 compositeFilm[J]. Semiconductor Optoelectronics, 2022, 43(1): 137-142. | |
[25] |
DO NASCIMENTO E S, PEREIRA A L S, BARROS M D, et al. TEMPO oxidation and high-speed blending as a combined approach to disassemble bacterial cellu-lose[J]. Cellulose, 2019, 26(4): 2291-2302.
doi: 10.1007/s10570-018-2208-2 |
[26] |
AMEDLOUS A, MAJDOUB M, AMATERZ E, et al. Synergistic effect of g-C3N4 nanosheets/Ag3PO4 microcubes as efficient n-p-type heterostructure based photoanode for photoelectrocatalytic dye degradation[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2021. DOI:10.1016/j.jphotochem.2020.113127.
doi: 10.1016/j.jphotochem.2020.113127 |
[27] |
WANG P, CAO Y, XU S, et al. Boosting the H2-evolution performance of TiO2/Au photocatalyst by the facile addition of thiourea molecules[J]. Applied Surface Science, 2020. DOI:10.1016/j.apsusc.2020.147420.
doi: 10.1016/j.apsusc.2020.147420 |
[28] |
MA B, YU N, XIN S, et al. Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2020.129242.
doi: 10.1016/j.chemosphere.2020.129242 |
[1] | 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209. |
[2] | 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35. |
[3] | 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63. |
[4] | 王洪杰, 胡忠文, 王赫, 凤权, 林童. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202. |
[5] | 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28. |
[6] | 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23. |
[7] | 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59. |
[8] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[9] | 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85. |
[10] | 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30. |
[11] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
[12] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[13] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68. |
[14] | 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22. |
[15] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
|