纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 165-171.doi: 10.13475/j.fzxb.20220104907

• 服装工程 • 上一篇    下一篇

女性运动裤脚款式感知评价与个性化定制推荐

蔡丽玲1,2, 任钱斌3, 季晓芬1,4(), 肖增瑞1, 章依凌1   

  1. 1.浙江理工大学 国际时装技术学院, 浙江 杭州 310018
    2.浙江理工大学 浙江省丝绸与时尚文化研究中心,浙江 杭州 310018
    3.浙江理工大学 服装学院, 浙江 杭州 310018
    4.中国丝绸博物馆, 浙江 杭州 310002
  • 收稿日期:2022-01-20 修回日期:2023-01-04 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 季晓芬(1971—),女,教授,博士。主要研究方向为服装个性化定制与智能制造。E-mail:xiaofenji@zstu.edu.cn
  • 作者简介:蔡丽玲(1980—),女,副教授,博士。主要研究方向为服装个性化定制与智能制造。
  • 基金资助:
    国家社会科学基金艺术学项目(20BG134);国家自然科学基金青年科学基金项目(72101233);浙江省哲学社会科学规划项目(21NDJC062YB)

Leg style perception evaluation and personalized customization of women's sports trousers

CAI Liling1,2, REN Qianbin3, JI Xiaofen1,4(), XIAO Zengrui1, ZHANG Yiling1   

  1. 1. Zhejiang International Institute of Fashion Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Silk and Fashion Culture Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. College of Fashion Design and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. China National Silk Museum, Hangzhou, Zhejiang 310018, China
  • Received:2022-01-20 Revised:2023-01-04 Published:2023-04-15 Online:2023-05-12

摘要:

为提升产品核心部件个性化推荐与用户情感需求的匹配度,帮助企业更准确把握用户定制过程的感性偏好,以女性运动裤的裤脚为例,构建基于感性工学的个性化推荐模型。首先采用语意差异法获取消费者对裤脚款式在7个维度的感性评价,建立感性意象空间;然后提取裤脚款式的设计要素,通过偏最小二乘法建立设计要素与消费感知的映射模型;最后采用模糊层次分析法量化消费者的感性需求,结合映射模型建立个性化推荐模型。结果显示:推荐结果与消费者感知评价的平均余弦相似度为0.902,说明设计元素与消费感知存在较高相关性;推荐算法预测结果的平均绝对值误差为0.54,推荐结果与用户需求匹配度较高,能有效将消费感性需求转化为设计元素。

关键词: 服装部件, 裤脚, 个性定制, 感性工学, 映射模型, 个性化推荐

Abstract:

Objective In recent years, consumers' demand for clothing has turned to be more individualized, diversified and intelligent. The purpose of this paper is to help enterprises accurately grasp the emotional preference of consumers in the customization process, so as to match the personalized recommendation of product core components with users' emotional needs, thus achieving successful personalized customization. This paper takes the female tracksuit bottom as an example to establish a personalized recommendation model based on Kanseiengineering, and to help consumers customize personal schemes based on their needs.
Method Based on the principle of Kansei engineering, this paper firstly collected the bottom styles and design elements. Adjective words were selected to describe the style, and semantic difference method was used to obtain consumers' perceptual evaluation in seven dimensions and build a perceptual image space. Then, the author set up a mapping model between design elements and consumer perception through partial least square(PLS) method. Analytic hierarchy process (FAHP) was applied to quantify the perceptual needs of consumers, and a personalized recommendation model combining with mapping modelwas established.
Results Through a preliminary screening, literature review and expert consultation of 100 tracksuit bottom designs, the quantifiable factors wereset including looseness, closing method and slitting method. Morphological analysis was used to decompose the three elements twice to obtain 12 sub elements. The design elements and coding table are shown in Tab. 1. After preliminary screening, questionnaire survey and expert screening of 120 perceptual adjectives werecollected, 7 pairs of adjectives were finally obtained which were used to establish the perceptual image space of female tracksuit bottoms. The vocabulary and its definition angle are shown in Tab. 2. According to the principle of Kanseiengineering, a 7-level scale was designed by semantic difference method. 70 female college students with exercise habits were randomly invited for questionnaire survey, and 64 valid questionnaires were obtained. The average score of sample styles are shown in Tab. 3. Minitab software was used to conduct regression analysis on the average scores of style design elements and adjectives. The regression coefficient table is shown in Tab. 4. According to the regression coefficient, a mapping model between design elements and consumption perception was established. Through questionnaire, users wereasked to choose the perceptual image words of preference to describe individual needs. For example, user I's perceptual image acquisition and demand emphasis are shown in Tab. 5 and Tab. 6. The weight of perceptual image wascalculated by FAHP, thus obtaining user one's perceptual image weight expression. Based on weight, clothing set distance sortingwas adopted, and recommendations were made according to the sorting results. For the case of user I, the comprehensive evaluation distance P was sorted of each experimental sample, and four styles that meet the perceptual needs of user I were generate(Fig. 4). 15 consumers were invited at random again to make recommendations, and the recommendation results were obtained, and the consumers were asked to conduct emotional evaluation on the recommendation results. The similarity of the score matrix between the recommendation results and the perception evaluation was compared by calculating the cosine similarity of formula 4. The average similarity reached 0.902, which was relatively high. The average absolute value error (RMAE) of formula 5 was used to evaluate the accuracy of recommendation results(Fig. 5). RMAE was all less than 0.75. The recommendation algorithm was found able topredict and recommend accurately and has certain application value.
Conclusion Based on Kansei engineering, this paper proposed a personalized recommendation model for tracksuit bottom, and demonstrates the algorithm and process of the recommendation. Through testing, it shows that this model can effectively transform the emotional needs of consumers into design elements, so that the recommendation results can be matched with user needs, thus realizing personalized recommendation for tracksuit bottom based on the emotional needs of users, and improving the efficiency of personalized customization. At present, only the styles of female tracksuit bottoms have been evaluated and recommended. In the future, more comprehensive studies can be carried out based on fabric comfort and color. Besides, the tracksuit bottom is only one part of a garment, and the research object can be expanded to other parts.

Key words: apparel component, trousers, personalized customization, Kansei engineering, mapping model, personalized recommendation

中图分类号: 

  • TS941.12

表1

设计要素编码表"

类型 子要素 要素编码
裤脚宽松度 直筒 A1
宽松 A2
修身 A3
收口方式 罗纹收口 B1
橡筋收口 B2
抽绳收口 B3
扣子收口 B4
不收口 B5
开衩方式 拉链开衩 C1
排扣开衩 C2
撕边开衩 C3
不开衩 C4

表2

感性意象词汇对及其定义角度"

编号 感性意象词汇对 定义角度
Q1 女性化的-中性化的 性别角度
Q2 稳重的-活力的 年龄角度
Q3 专业的-休闲的 运动场合
Q4 复杂的-简约的 结构特征
Q5 个性的-大众的 接受程度
Q6 前卫的-保守的 年代角度
Q7 实用的-花哨的 外观设计

表3

实验样本形容词平均值"

款式编号 Q1 Q2 Q3 Q4 Q5 Q6 Q7
1 1.30 0.11 0.92 0.98 0.71 0.08 -0.78
2 1.43 1.40 1.19 0.59 0.76 0.03 -1.16
3 -0.71 1.75 1.30 -1.63 -1.81 -1.51 1.32
4 -1.02 0.62 1.11 1.05 -0.14 -0.46 -0.02
5 0.95 0.79 0.87 -0.03 -0.63 -0.75 -0.22
6 0.38 1.25 0.48 -1.59 -1.49 -1.19 0.86
7 0.56 1.48 1.05 -0.56 -0.78 -1.1 0.25
8 -0.43 1.48 1.29 -0.13 -1.14 -1.24 0.22
9 0.67 1.03 0.71 -0.14 -0.54 -0.57 -0.11
10 0.73 0.08 -0.29 1.54 1.06 0.83 -1.44
11 -1.97 0.84 1.00 1.41 -0.38 -0.59 0.24
12 1.67 -1.21 0.35 2.03 1.98 1.51 -1.81
13 1.49 0.41 -0.25 0.97 0.38 0.14 -1.24
14 0.51 1.27 0.76 1.27 0.89 0.43 -1.30
15 1.33 -0.56 0.08 0.94 0.21 0.32 -1.02
16 -0.11 -0.40 0.67 0.37 -0.59 -0.54 0.10
17 -0.27 1.00 0.41 0.68 -0.57 -0.21 -0.29
18 -0.79 -0.14 -0.49 1.81 1.27 0.84 -1.51

图1

部分实验样本款式"

表4

回归系数"

要素编号 Q1 Q2 Q3 Q4 Q5 Q6 Q7
A1 0.752 -0.252 -0.116 0.220 0.418 0.310 -0.403
A2 -0.468 0.256 0.301 -0.079 -0.168 -0.235 0.248
A3 -0.390 -0.005 -0.255 -0.194 -0.345 -0.103 0.213
B1 -0.350 -0.134 -0.289 0.043 -0.153 0.038 0.052
B2 0.388 0.159 0.094 -0.349 -0.111 -0.126 0.091
B3 0.257 0.264 0.307 -0.287 -0.066 -0.190 0.129
B4 0.692 -0.381 -0.450 0.115 0.246 0.349 -0.367
B5 -0.532 -0.052 0.083 0.363 0.107 0.047 -0.027
C1 -0.438 0.637 0.053 -1.246 -1.115 -0.750 0.905
C2 -0.137 0.372 0.212 -0.539 -0.424 -0.373 0.400
C3 -0.127 -0.106 -0.042 0.221 0.117 0.100 -0.096
C4 0.315 -0.438 -0.128 0.741 0.662 0.488 -0.570

表5

用户Ⅰ感性意象获取"

意象 非常 比较 一般 比较 非常 意象
女性化的 中性化的
稳重的 活力的
专业的 休闲的
复杂的 简约的
个性的 大众的
前卫的 保守的
实用的 花哨的

表6

用户Ⅰ需求重视程度获取"

意象 一般 比较重视 很重视 非常重视
女性化的-中性化的
稳重的-活力的
专业的-休闲的
复杂的-简约的
个性的-大众的
前卫的-保守的
实用的-花哨的

图2

推荐模型实验样本1#~20#"

图3

推荐演示样本"

图4

推荐服装集"

图5

用户平均绝对误差值"

[1] 朱伟明, 卫杨红. 不同情景下服装个性化定制体验价值差异研究[J]. 纺织学报, 2018, 39(10): 115-119.
ZHU Weiming, WEI Yanghong. Research on the value difference of clothing personalized customization experience under different scenarios[J]. Journal of Textile Research, 2018, 39(10): 115-119.
[2] 李司琪. 模块化虚拟设计在服装定制中的应用[D]. 上海: 东华大学, 2020:5-6.
LI Siqi. Application of modular virtual design in garment customization[D]. Shanghai: Donghua University, 2020:5-6.
[3] 刘延凤. 基于用户需求获取的个性化定制方法研究[D]. 西安: 西安电子科技大学, 2020:61-62.
LIU Yanfeng. Research on personalized customization method based on user demand acquisition[D]. Xi'an: Xidian University, 2020:61-62.
[4] 甘美辰, 李敏. 女装搭配推荐系统的设计与实现[J]. 纺织学报, 2020, 41(10): 122-131.
GAN Meichen, LI Min. Design and realization of a collocation recommendation system for women's clothing[J]. Journal of Textile Research, 2020, 41(10): 122-131.
[5] 王斐, 吴清烈. 基于用户画像与协同过滤的大规模定制智能推荐算法研究[J]. 工业工程, 2021, 24(5): 159-164.
WANG Fei, WU Qinglie. Research on mass customization intelligent recommendation algorithm based on user profile and collaborative filtering[J]. Industrial Engineering, 2021, 24(5): 159-164.
[6] 李倩文, 王建萍, 杨雅岚, 等. 基于意象尺度的男西装造型风格认知评价[J]. 纺织学报, 2021, 42(4): 149-154.
LI Qianwen, WANG Jianping, YANG Yalan, et al. Cognitive evaluation of men's suit style based on image scale[J]. Journal of Textile Research, 2021, 42(4): 149-154.
[7] 周小溪, 梁惠娥. 服装面料感性意象的评价与分析[J]. 纺织学报, 2015, 36(3): 99-104.
ZHOU Xiaoxi, LIANG Hui'e. Evaluation and analysis of perceptual image of garment fabric[J]. Journal of Textile Research, 2015, 36(3): 99-104.
doi: 10.1177/004051756603600201
[8] 江学为, 田润雨, 卢方骁, 等. 基于模拟评分的服装推荐改进算法[J]. 纺织学报, 2021, 42(12): 138-144.
JIANG Xuewei, TIAN Runyu, LU Fangxiao, et al. Improved clothing recommendation algorithm based on simulation scoring[J]. Journal of Textile Research, 2021, 42(12): 138-144.
[9] 李文欣, 文田. 裤装的时尚设计要素及可穿戴流行趋势分析[J]. 化纤与纺织技术, 2021, 50(5): 116-117.
LI Wenxin, WEN Tian. Analysis of fashionable design elements and wearable fashion trend of trousers[J]. Chemical Fiber and Textile Technology, 2021, 50(5): 116-117.
[10] 张韩. 连衣裙的造型要素与感性意象关联量化及款式推荐研究[D]. 杭州: 浙江理工大学. 2017:43-46.
ZHANG Han. Study on the Quantitative relation between the modeling element and the emotional image of the dress and the style recommendation[D]. Hangzhou: Zhejiang Sci-Tech University, 2017:43-46.
[11] 徐泽水. 模糊互补判断矩阵的相容性及一致性研究[J]. 解放军理工大学学报(自然科学版), 2002(2): 94-96.
XU Zeshui. Study on compatibility and consistency of fuzzy complementary judgment matrix[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2002(2): 94-96.
[12] 朱明明. 基于模糊层次分析法的工程项目风险评估[J]. 科技管理研究, 2010, 30(20): 214-217.
ZHU Mingming. Project risk assessment based on fuzzy analytic hierarchy process[J]. Research on Science and Technology Management, 2010, 30(20): 214-217.
[13] 王霖琳, 薄瑞, 张学文. 区域模糊综合评价中的空间隶属度尺度转换分析[J]. 山东农业大学学报(自然科学版), 2014, 45(3): 454-457.
WANG Linlin, BO Rui, ZHANG Xuewen. Scale Transformation analysis of spatial membership degree in regional fuzzy comprehensive evaluation[J]. Journal of Shandong Agricultural University (Natural Science), 2014, 45(3): 454-457.
[14] 李伟华. 基于FAHP的服装企业供应链柔性评价研究[D]. 青岛: 青岛大学. 2020:29-30.
LI Weihua. Research on supply chain flexibility evaluation of garment enterprises based on FAHP[D]. Qingdao: Qingdao University, 2020:29-30.
[15] 周小溪. 基于感性工学的服用色织面料美感评价方法[D]. 无锡: 江南大学, 2016:69-72.
ZHOU Xiaoxi. Aesthetic evaluation method of wear yarn-dyed fabric based on Kansei engineering[D]. Wuxi: Jiangnan University, 2016:69-72.
[16] 陈大力, 沈岩涛, 谢槟竹, 等. 基于余弦相似度模型的最佳教练遴选算法[J]. 东北大学学报(自然科学版), 2014, 35(12): 1697-1700.
doi: 10.12068/j.issn.1005-3026.2014.12.006
CHEN Dali. SHEN Yantao, XIE Binzhu, et al. Best coach selection algorithm based on cosine similarity model[J]. Journal of Northeastern University (Natural Science), 2014, 35(12): 1697-1700.
[17] PAPAGELIS M, PLEXOUSAKIS D. Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents[J]. Engineering Applications of Artificial Intelligence, 2005, 18(7): 781-789.
doi: 10.1016/j.engappai.2005.06.010
[18] GOLDBERG K, ROEDER T, GUPTA D, et al. Eigentaste: a constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4(2): 133-151.
doi: 10.1023/A:1011419012209
[1] 刘军平, 张伏红, 胡新荣, 彭涛, 李丽, 朱强, 张俊杰. 基于多模态融合的个性化服装搭配推荐[J]. 纺织学报, 2023, 44(03): 176-186.
[2] 赵馨, 王彩霞, 周小皮, 丁雪梅. 基于岭回归方法的羊毛衫洗后特征感性评价[J]. 纺织学报, 2022, 43(07): 155-161.
[3] 杨晓波. 基于交互式遗传算法的三维服装款式研究[J]. 纺织学报, 2022, 43(06): 145-150.
[4] 宋莹. 旗袍个性定制和展示系统的交互设计[J]. 纺织学报, 2021, 42(04): 144-148.
[5] 甘美辰, 李敏. 女装搭配推荐系统的设计与实现[J]. 纺织学报, 2020, 41(10): 122-131.
[6] 李杨, 吴晶. 服装波点图案消费感知与设计要素的相关性[J]. 纺织学报, 2020, 41(10): 132-136.
[7] 顾朝晖 王亚娟. 明代青花纹样在旗袍上的应用效果[J]. 纺织学报, 2018, 39(01): 126-132.
[8] 周小溪 梁惠娥 陈潇潇 董稚雅 秦潇璇. 春夏季衬衫用色织面料材质的感觉评价[J]. 纺织学报, 2016, 37(08): 59-64.
[9] 赵敏 张廷廷 王英 阿牛史日. 凉山彝族男裤的形制及结构特征[J]. 纺织学报, 2016, 37(07): 121-125.
[10] 蔡兰 厉旗 李鹏威 尚笑梅. 基于衬衫部件重构的纸样设计方法[J]. 纺织学报, 2015, 36(08): 116-120.
[11] 高维 肖军. 基于女大学生的服装设计感性评价个体差异[J]. 纺织学报, 2014, 35(5): 137-0.
[12] 施静. 热缩膜成型皱缩面料的感性形象分析[J]. 纺织学报, 2008, 29(4): 67-70.
[13] 王莹;陈雁. 利用感性工学原理设计学生装[J]. 纺织学报, 2007, 28(3): 96-99.
[14] 王莹;陈雁. 冬季女外套款式感性研究和应用[J]. 纺织学报, 2007, 28(11): 97-100.
[15] 江影;刘国联. 消费者对T恤衫形象的感性需求调研分析[J]. 纺织学报, 2006, 27(2): 98-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!