纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 212-221.doi: 10.13475/j.fzxb.20220303310

• 综合述评 • 上一篇    下一篇

基于光子晶体结构生色纤维的研究进展

顾佳1, 张振雄2, 韩颖1, 胡建臣1,2, 张克勤1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州新民纺织有限公司, 江苏 苏州 215228
  • 收稿日期:2022-03-09 修回日期:2022-12-29 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 张克勤(1972—),男,教授,博士。主要研究方向为功能纤维与生物材料和生物质多功能复合纤维材料研究。E-mail:kqzhang@suda.edu.cn
  • 作者简介:顾佳(1996—),女,硕士生。主要研究方向为结构色纤维。
  • 基金资助:
    国家自然科学基金面上项目(51873134);江苏省高等学校自然科学研究重大项目(17KJA540002);江苏省自然科学基金项目(BK20211317);南通市科技计划项目(JC2021043)

Research and application of structural color fibers with photonic crystals

GU Jia1, ZHANG Zhenxiong2, HAN Ying1, HU Jianchen1,2, ZHANG Keqin1()   

  1. 1. College of Textiles and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Suzhou Xinmin Textile Co., Ltd., Suzhou, Jiangsu 215228, China
  • Received:2022-03-09 Revised:2022-12-29 Published:2023-04-15 Online:2023-05-12

摘要:

为制备色彩饱和度高、不易褪色且制备过程环境友好的多彩纤维,研究人员开发了多种相关的技术,其中光子晶体形成的结构色纤维具有优良的特性。因此对近年来国内外关于光子晶体结构色纤维的研究进行了回顾,综述了组成结构色纤维的多维光子晶体的生色原理,重点总结了光子晶体结构色纤维的主要制备方法,包括传统纤维外部着色法、模板法组装和不同纺丝技术形成结构色纤维。大量的研究表明,光子晶体作为结构生色技术的基础材料,促进了光子晶体结构色纤维研究的蓬勃发展。此外,综述了多功能结构色纤维在穿戴、检测、传感等领域的研究和应用进展,分析了光子晶体纤维设计和应用的瓶颈问题,并对其未来发展趋势进行了展望。光子晶体纤维的机械性能、优异的色彩饱和度等光学性能和尺寸均匀性使其在可穿戴、传感、生物检测、环境响应等领域具有很好的应用前景。

关键词: 光子晶体, 结构色纤维, 纤维外部着色法, 模板组装法, 纺丝方法

Abstract:

Significance Structural color is formed by utilizing microstructures to produce color through visible light scattering or interference. In the researches for fabrication of colorful fibers with high color saturation which are not easy to fade and are environmentally-friendly, formation of structural color fibers based on photonic crystals is an effective method. The application of structural color in the textile field mainly target at obtaining fabrics with highly color saturation and reducing the pollution caused by chemical dyeing, and for this reason structural color fibers have received much attention in recent years due to their significant potential applications in sensor and wearable device. This paper is set to review the research activities and applications of structural color fibers.
Progress The review covers the color generation principles of the multidimensional photonic crystals that make up structural color fibers, and focuses on the main methods of preparing structural color fibers based on photonic crystals, including traditional fiber external coloring, template assembly and other different spinning technologies (Fig. 1). The method of structural color fibers formed by traditional fiber external coloring is to coat photonic crystal on the surface of fibers with external conditions to form structural color fibers. Among them, the most commonly used methods are convective self-assembly (Fig. 2), electrophoretic deposition, atomic layer deposition and magnetic assembly. The template assembly method (Fig. 3) is different from the structural color fibers formed by traditional fiber external coloring, in which colloidal microspheres are assembled on the template through capillary force and other effects with the help of the template to form photonic crystal fibers. An example is the formation of structural color fibers by rapidly self-assembling colloidal silica nanoparticles in capillary tubes. Electrostatic spinning (Fig. 4(a)) and microfluidic spinning (Fig. 4(b)) are common spinning techniques, and are also studied in the researches on formation of structural color fibers. In particular, microfluidic spinning technology is a spinning technology that can precisely control and manipulate micro-nano scale fluid. As shown in Fig. 4(b), point-aligned colloidal crystal fibers and structural color-coded fibers by integrating injectable photonic hydrogels with microfluidic assisted assembly methods are developed. Besides, the paper reviews the progress of researches and applications of multifunctional structural color fibers in the fields of wearability, detection and sensing.
Conclusions and Prospect The advantages of photonic crystal structural color fibers are summarized. The bottlenecks in the design and applications of structural color fibers are analyzed, and their future developments are prospected. It can be concluded that photonic crystals, as the basic material of structure color generation technology, promote the vigorous development of photonic crystal structure color fiber researches. Structural color fibers with a certain mechanical properties, excellent optical properties and size uniformity show application potentials in wearable, sensing, biological detection, environmental response and other fields. There are several aspects about the future development of photonic crystal structural color fibers that need to be further explored and studied. Firstly, when assembling photonic crystals onto conventional fibers or forming photonic crystal structure color fibers by the template method, the assembly stability of photonic crystals has not been satisfactory. In order to improve the structural stability of photonic crystals on fibers, the material can be chemically modified to effectively enhance the bonding between the microspheres. Secondly, Use of optimal photonic crystal materials and addition of adhesive polymer materials would improve the mechanical properties of structural color fibers. Finally, the simpler and cheaper preparation process allows for industrial production. The exploration and improvement of these points will make the development and application of photonic crystal fibers more realistic.

Key words: photonic crystal, structural color fiber, fiber external coloring method, formwork assembly method, spinning method

中图分类号: 

  • TS151

图1

光子晶体结构色纤维的制备方法"

图2

纤维外部由光子晶体着色"

图3

模板组装法组装光子晶体结构色纤维"

图4

纺丝法形成光子晶体结构色纤维"

[1] DAQIQEH R S, DONG Z, YOUEN C J, et al. Nanophotonic structural Colors[J]. ACS Photonics, 2020, 8(1): 18-33.
doi: 10.1021/acsphotonics.0c00947
[2] DE S L, HODGKINSON I, MURRARY P, et al. Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings[J]. Electromagnetics, 2005, 25(5): 391-408.
doi: 10.1080/02726340590957399
[3] KINOSHITA S, YOSHIOKA S. Structural colors in nature: the role of regularity and irregularity in the structure[J]. Chemphyschem, 2005, 6(8): 1442-1459.
pmid: 16015669
[4] MICHIELSEN K, STAVENGA D G. Gyroid cuticular structures in butterfly wing scales: biological photonic crystals[J]. J R Soc Interface, 2008, 5(18): 85-94.
pmid: 17567555
[5] SILLBERGLIED R T. Ultraviolet differences between the sulphur butterflies,colias eurytheme and c. philodice, and a possible isolating mechanism.[J]. Nature, 1973, 241: 406-408.
doi: 10.1038/241406a0
[6] VUKUSIC P, STAVENGA D G. Physical methods for investigating structural colours in biological systems[J]. J R Soc Interface, 2009, 6 (2): 133-148.
[7] CAI Z, LI Z, RAVAINE S, et al. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications[J]. Chem Soc Rev, 2021, 50(10): 5898-5951.
doi: 10.1039/d0cs00706d pmid: 34027954
[8] KIM J H, KIM K H, LEE G H, et al. Microfluidic production of mechanochromic photonic fibers containing nonclose‐packed colloidal arrays[J]. Small Science, 2021, 1(4): 2000058.
doi: 10.1002/smsc.v1.4
[9] CUI T, ZHU Z, CHENG R, et al. Facile access to wearable device via microfluidic spinning of robust and aligned fluorescent microfibers[J]. ACS Appl Mater Inter, 2018, 10(36): 30785-30793.
doi: 10.1021/acsami.8b11926
[10] CHEN Z, YU Y, GUO J, et al. Heterogeneous structural color microfibers for cardiomyocytes tug-of-war[J]. Adv Funct Mater, 2020, 31(9): 2007527.
doi: 10.1002/adfm.v31.9
[11] 裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2018, 37(4): 1468-1478.
[12] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12): 1-14.
doi: 10.1177/004051757204200101
[13] 寇东辉, 马威, 张淑芬, 等. 一维光子晶体结构色材料的应用研究进展[J]. 化工进展, 2018, 37(4): 1468-1478.
KOU Donghui, MA Wei, ZHANG Shufen, et al. Research progress on applications of one-dimensional photonic crystal materials with structural colors[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1468-1478.
[14] MARLOW F, MULDARISNUR, SHARIFI P, et al. Opals: status and prospects[J]. Angew Chem Int Ed Engl, 2009, 48(34): 6212-6233.
doi: 10.1002/anie.200900210
[15] DING H B, LIU C H, YE B F, et al. Free-standing photonic crystal films with gradient structural colors[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 6796-6801.
[16] LIU X, CUI H. Color evaluation of one-dimensional photonic crystal on the fabric[J]. Fiber Polymer, 2014, 15(4): 783-787.
doi: 10.1007/s12221-014-0783-x
[17] WANG H, CHEN Q W, YU Y F, et al. Assembly of superparamagnetic colloidal nanoparticles into field-responsive purple Bragg reflectors[J]. Dalton Trans, 2011, 40(18): 4810-4813.
doi: 10.1039/c1dt10268k pmid: 21465041
[18] ZHANG Y P, CHODAVARAPU V P, KIRK A G, et al. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films[J]. Sensors and Actuators B: Chemical, 2013, 176: 692-697.
doi: 10.1016/j.snb.2012.09.100
[19] WANG Z, GUO Z. Biomimetic photonic structures with tunable structural colours: from natural to biomimetic to applications[J]. J Bionic Eng, 2018, 15(1): 1-33.
doi: 10.1007/s42235-017-0001-9
[20] WELCH V L, VIGNERON J P, PARKER A R. The cause of colouration in the ctenophore beroe cucumis[J]. Curr Biol, 2005, 15(24): R985-986.
doi: 10.1016/j.cub.2005.11.060
[21] 陈辰, 钟金祥, 洪荣墩. 激光干涉光刻法制备二氧化硅光子晶体抗反射膜[J]. 电子技术与软件工程, 2014(9): 121-123.
CHEN Chen, ZHONG Jinxiang, HONG Rongdun. Antireflection films of silica photonic crystals prepared by laser interference lithography[J]. Electronic Technology & Software Engineering, 2014(9): 121-123.
[22] CERSONSKY R K, ANTONAGLIA J, DICE B D, et al. The diversity of three-dimensional photonic crystals[J]. Nat Commun, 2021, 12(1): 2543.
doi: 10.1038/s41467-021-22809-6 pmid: 33953178
[23] TAKEOKA Y. Stimul-responsive opals: colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials[J]. J Mater Chem C, 2013, 1(38): 6059-6074.
doi: 10.1039/c3tc30885e
[24] SHI L, ZHANG Y, DONG B, et al. Amorphous photonic crystals with only short-range order[J]. Adv Mater, 2013, 25(37): 5314-5320.
doi: 10.1002/adma.201301909
[25] KOLLE M, LETHBRIDGE A, KREYSING M, et al. Bio-inspired band-gap tunable elastic optical multilayer fibers[J]. Adv Mater, 2013, 25(15): 2239-2245.
doi: 10.1002/adma.201203529
[26] YUAN W, LI Q, ZHOU N, et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties[J]. ACS Appl Mater Inter, 2019, 11(21): 19388-19396.
doi: 10.1021/acsami.8b21070
[27] WANG Y, NIU W, LO C Y, et al. Interactively full‐color changeable electronic fiber sensor with high stretchability and rapid response[J]. Adv Funct Mater, 2020. DOI:10.1002/adfm.202000356.
doi: 10.1002/adfm.202000356
[28] CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-Inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139 pmid: 28933813
[29] NIU W, ZHANG L, WANG Y, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Appl Mater Inter, 2019, 11(35): 32261-32268.
doi: 10.1021/acsami.9b09459
[30] NIU W, LI X, KARUTURI S K, et al. Applications of atomic layer deposition in solar cells[J]. Nanotechnology, 2015, 26(6): 064001.
doi: 10.1088/0957-4484/26/6/064001
[31] LIU Z, ZHANG Q, WANG H, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method[J]. Nanoscale, 2013, 5(15): 6917-6922.
doi: 10.1039/c3nr01766d pmid: 23783532
[32] SUN X, ZHANG J, LU X, et al. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes[J]. Angew Chem Int Ed Engl, 2015, 54(12): 3630-3634.
doi: 10.1002/anie.201412475
[33] LAI C H, HUANG Y J, WU P W, et al. Rapid fabrication of cylindrical colloidal crystals and their inverse opals[J]. J Electrochem Soc, 2010, 157(3): 23-27.
[34] SHANG S, ZHANG Q, WANG H, et al. Facile fabrication of magnetically responsive PDMS fiber for camouflage[J]. J Colloid Interface Sci, 2016, 483: 11-16.
doi: 10.1016/j.jcis.2016.08.005
[35] ZHAO K, CHENG J, SUN N, et al. Photonic janus carbon fibers with structural color gradient for multicolored, wirelessly wearable thermal management devices[J]. Adv Mater Technol, 2021. DOI: 10.1002/admt.2101057.
doi: 10.1002/admt.2101057
[36] SHANG S, ZHU P, WANG H, et al. Thermally responsive photonic fibers consisting of chained nanoparticles[J]. ACS Appl Mater Inter, 2020, 12(45): 50844-50851.
doi: 10.1021/acsami.0c14749
[37] DOMèNECH B, TAN A T L, JELITTO H, et al. Strong macroscale supercrystalline structures by 3D printing combined with self‐assembly of ceramic functionalized nanoparticles[J]. Adv Eng Mater, 2020. DOI:10.1002/adem.20200352.
doi: 10.1002/adem.20200352
[38] ZHAO Z, WANG H, SHANG L, et al. Bioinspired heterogeneous structural color stripes from capill-aries[J]. Adv Mater, 2017. DOI: 10.1002/adma.1704569.
doi: 10.1002/adma.1704569
[39] GAO B, TANG L, ZHANG D, et al. Transpirati-inspired fabrication of opal capillary with multiple heterostructures for multiplex aptamer-based fluorescent assays[J]. ACS Appl Mater Inter, 2017, 9(38): 32577-32582.
doi: 10.1021/acsami.7b10143
[40] ISAPOUR G, MILLER B H, KOLLE M. Modular assembly of mechanoresponsive color-changing materials from hydrogel-based photonic crystal microspheres[J]. Advanced Photonics Research, 2021, 3(1): 2100043.
doi: 10.1002/adpr.v3.1
[41] CHEN J, XU L, YANG M, et al. Highly stretchable photonic crystal hydrogels for a sensitive mechanochromic sensor and direct Ink writing[J]. Chem Mater, 2019, 31(21): 8918-8926.
doi: 10.1021/acs.chemmater.9b02961
[42] KIM S H, HWANG H, YANG S M. Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries[J]. Angew Chem Int Ed Engl, 2012, 51(15): 3601-3605.
doi: 10.1002/anie.v51.15
[43] YUAN W, ZHANG K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir, 2012, 28(43): 15418-15424.
doi: 10.1021/la303312q pmid: 23039272
[44] YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering[J]. ACS Appl Mater Inter, 2015, 7(25): 14064-14071.
doi: 10.1021/acsami.5b03289
[45] MU Q, ZHANG Q, GAO L, et al. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAM nanofibers by electrospun packing[J]. Langmuir, 2017, 33(39): 10291-10301.
doi: 10.1021/acs.langmuir.7b02275 pmid: 28876075
[46] YUAN S J, MENG W H, DU A H, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese J Polym Sci, 2019, 37(8): 729-736.
doi: 10.1007/s10118-019-2286-0
[47] KOHRI M, YANAGIMOTO K, KAWAMURA A, et al. Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-Like particles with polydopamine shell layers[J]. ACS Appl Mater Inter, 2018, 10(9): 7640-7648.
doi: 10.1021/acsami.7b03453
[48] LI G X, SHEN H X, LI Q, et al. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique[J]. Mater Lett, 2019, 242: 179-182.
doi: 10.1016/j.matlet.2019.01.093
[49] ZHU Z, LIU J D, LIU C, et al. Microfluidics-assisted assembly of injectable photonic hydrogels toward reflective cooling[J]. Small, 2020. DOI:10.1002/smll.201903939.
doi: 10.1002/smll.201903939
[50] ZHANG J, HE S, LIU L, et al. The continuous fabrication of mechanochromic fibers[J]. J Mater Chem C, 2016, 4(11): 2127-2133.
doi: 10.1039/C5TC04073F
[51] LI S, XIA L, CHEN Z, et al. Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing[J]. Opt Quant Electron, 2017, 49(2): 66.
doi: 10.1007/s11082-017-0905-y
[52] DI PALMA P, SANSONE L, TADDEI C, et al. Fiber optic probe based on self-assembled photonic crystal for relative humidity sensing[J]. J Lightwave Technol, 2019, 37(18): 4610-4618.
doi: 10.1109/JLT.50
[53] PALMA P D, TADDEI C, BORRIELLO A, et al. Self-assembled colloidal photonic crystal on the fiber optic tip as a sensing probe[J]. IEEE Photonics J, 2017, 9(2): 1-11.
[54] SANSONE L, CAMPOPIANO S, PANNICO M, et al. Photonic bandgap influence on the sers effect in metal-dielectric colloidal crystals optical fiber probe[J]. Sensor Actuat B: Chem, 2021. DOI:10.1016/j.snb2021.130149.
doi: 10.1016/j.snb2021.130149
[55] HAIBIN N, MING W, LONG L, et al. Photonic-crystal-based optical fiber bundles and their applications[J]. IEEE Photonics J, 2013.DOI:10.1109/JPH07.2013.
doi: 10.1109/JPH07.2013
[1] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[2] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[3] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[4] 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94.
[5] 林田田, 杨丹, 高伟洪, 张之悦, 赵小燕. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(02): 149-155.
[6] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[7] 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20.
[8] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[9] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[10] 陈佳颖, 辛斌杰, 辛三法, 杜卫平, 许颖琦, 高伟洪. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04): 181-187.
[11] 张慧 刘晓艳. 光子晶体在织物表面的色泽呈现[J]. 纺织学报, 2017, 38(08): 91-95.
[12] 李义臣 刘国金 邵建中 周岚. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!