纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 230-237.doi: 10.13475/j.fzxb.20211103808

• 综合述评 • 上一篇    

石墨烯基新型抗菌材料的研究进展

李阳, 封严()   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2021-11-05 修回日期:2022-06-30 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 封严(1975—),女,教授,博士。主要研究方向为新型功能纤维材料。E-mail:fengyan@tiangong.edu.cn
  • 作者简介:李阳(1998—),男,硕士生。主要研究方向为石墨烯基新型抗菌材料。

Research progress and application of new graphene based antibacterial materials

LI Yang, FENG Yan()   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387,China
  • Received:2021-11-05 Revised:2022-06-30 Published:2023-04-15 Online:2023-05-12

摘要:

为更好地解决单一材料在抗菌领域所面临的局限性问题,对石墨烯基新型抗菌材料的研究展开论述。介绍了石墨烯材料在抗菌方面广谱抗菌、物理和化学作用等的特点,重点阐述了石墨烯及其衍生物的接触切割、包覆作用、氧化应激作用等抗菌机制。然后分析了石墨烯与纳米材料、壳聚糖、季铵盐、卤胺等复合后的研究进展,为其发展提供了参考意义。最后总结了石墨烯基复合抗菌材料在纺织中的研究进展以及当前研究中仍然存在的一些问题,并展望其未来的发展方向。研究表明:将石墨烯材料与其它抗菌材料复合,所得材料可充分发挥各组分之间的协同抗菌作用,其发展较为迅速;然而,尽管石墨烯基新型抗菌材料发展迅速,但其实现产业化仍面临诸多挑战,未来应侧重于优化其制备工艺、抗菌机制等方面,使其向绿色、环保方向发展。

关键词: 石墨烯基新型抗菌材料, 纳米材料, 抗菌机制, 纺织领域, 制备工艺, 研究进展

Abstract:

Significance Variety of bacteria in the nature pose a great threat to animals and plants, as well as human beings leading to gradual emergence of various antibiotics. However, due to the large use of antibiotics, many pathogenic bacteria have developed strong resistance to them, leading the decreased efficacy of antibiotics, and it is hence urgent to develop more effective antibacterial materials. The graphene family materials themselves have certain antibacterial properties, but the effect of a single graphene material in exerting its antibacterial properties is not ideal. In this case, the synergistic antibacterial effect between components can be better played by combining graphene materials with other antibacterial materials. In view of this, in order to better overcome the limitations faced by single materials in the antibacterial field, the research progress in graphene based new antibacterial materials is reviewed and discussed, with the aim to provide reference for research and development of new antibacterial materials with strong antibacterial properties, long antibacterial aging properties, and stable antibacterial properties.
Progress The characteristics of graphene materials in antibacterial such as broad-spectrum antibacterial, physical and chemical effects were introduced, and the antibacterial mechanisms of graphene and its derivatives including contact cutting, coating, and oxidative stress were emphatically elaborated. Then, the research progress of graphene compounded with nanomaterial, chitosan, quaternary ammonium salts, haloamines, etc. was analyzed. The image of Escherichia coli cells was showed before and after a sandwich type antibacterial material treatment under the scanning electron microscope(Fig.1). The sandwich type antibacterial material was prepared by directly growing silver nanoparticles on the surface of graphene based nano sheets. The image shows that the bacterial cell membrane structure was damaged after the sandwich type antibacterial material were treated with Escherichia coli cells for a period of time. The difference diagram of antibacterial performance was showed between graphene and composites with different copper nanoparticles loading by colony count method(Fig. 2). The results show that, within a certain range, the loading of copper nanoparticles significantly improved the antibacterial performance of graphene. When the loading of copper nanoparticles was 10%, the antibacterial effect of the composite reached the best state. The application of graphene based composite antibacterial materials in the textile field was analysed, problems challenging research are summarized, and the future development direction of graphene based composite antibacterial materials is prospected.
Conclusions and Prospect The literature review shows that in the field of antibacterial, graphene materials exhibit broad-spectrum antibacterial activity that can inhibit a variety of pathogenic bacteria. When graphene materials exert their antibacterial activity, there are physical and chemical action modes, including physical damage caused by nanoknife contact cutting, reactive oxygen mechanism generated by oxidative stress, and coating effect. When graphene materials are compounded with other materials, such as nano silver particles, nano copper particles, titanium dioxide, nano zinc oxide particles, chitosan, quaternary ammonium salts, haloamines, and so on, the prepared graphene based new antibacterial materials demonstrate excellent antibacterial properties, and the composite materials show more excellent antibacterial properties than a single component. This is because the graphene based new antibacterial materials can give full play to the synergistic effect between components, and reduce the reunions between components. When graphene based composite antibacterial materials are applied in the textiles, the developed composite fibers and functional fabrics have good antibacterial activity, and the modified fibers and fabrics can inactivate gram-positive bacteria, gram-negative bacteria and other pathogens. However, during the development of functional fabrics, there are still problems such as the defects of graphene fibers and the difficulties in the combination of graphene materials and fabrics, calling for solutions. To sum up, the materials obtained by compounding graphene materials with other antibacterial materials can give full play to the synergistic antibacterial effect of each component and develop rapidly. However, despite the rapid development of graphene based new antibacterial materials, their industrialization still faces many challenges. In the future, focuses should be placed on optimizing their preparation process, antibacterial mechanism and other aspects to make them green and environmentally friendly.

Key words: graphene based new antibacterial material, nanometer material, antibacterial mechanism, textile field, preparation process, research progress

中图分类号: 

  • TS176.9

图1

三明治型抗菌材料处理前后的大肠杆菌细胞图"

图2

菌落计数法测试不同纳米复合材料抗菌性能效果图"

[1] 熊开容, 梁业如, 吴丁财, 等. 纳米银颗粒原位生长于氧化石墨烯银盐纳米复合材料的简易合成及其抗菌性能(英文)[J]. 新型炭材料, 2019, 34(5):426-433, 10-16.
XIONG Kairong, LIANG Yeru, WU Dingcai, et al. Simple synthesis and antibacterial properties of silver nanoparticles in situ grown on graphene oxide silver salt Nanocomposites(English)[J]. New Carbon Materials, 2019, 34(5): 426-433, 10-16.
doi: 10.1016/S18725805(19)60024-7
[2] ZHANG Huaizhi, ZHANG Chang, ZENG Guangming, et al. Easily separated silver nanoparticle-decorated magnetic graphene oxide: synthesis and high antibacterial activity[J]. Journal of Colloid And Interface Science, 2016, 471:94-102.
doi: S0021-9797(16)30157-6 pmid: 26994349
[3] DIMITRIOS G P, IAN A K, ROBERT J Y. Mechanical properties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90: 75-127.
doi: 10.1016/j.pmatsci.2017.07.004
[4] ZOU Xuefeng, ZHANG Li, WANG Zhaojun, et al. Mechanisms of the antimicrobial activities of graphene materials[J]. Journal of the American Chemical Society, 2016, 138(7): 2064-2077.
doi: 10.1021/jacs.5b11411 pmid: 26824139
[5] PARVEEN K, PEIPEI H, RONGZHAO Z, et al. Antibacterial properties of graphene-based nano-materials[J]. Nanomaterials, 2019, 9(5): 737-737.
doi: 10.3390/nano9050737
[6] SHI Lin, TENG Lijing, WANG Lin, et al. The antibacterial applications of graphene and its deriva-tives.[J]. Small (Weinheim an der Bergstrasse, Germany), 2016, 12(31): 4165-4184.
doi: 10.1002/smll.v12.31
[7] HU W, PENG C, LUO W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7): 4317-4323.
doi: 10.1021/nn101097v pmid: 20593851
[8] AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacterial[J]. ACS Nano, 2010, 4(10): 5731-5736.
doi: 10.1021/nn101390x pmid: 20925398
[9] LIU Shaobin, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS nano, 2011, 5(9): 6971-6980.
doi: 10.1021/nn202451x pmid: 21851105
[10] TU Yusong, LV M, XIU P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets.[J]. Nature nanotechnology, 2013, 8(8): 594-601.
doi: 10.1038/nnano.2013.125 pmid: 23832191
[11] PHAM V T H, TRUONG V K, QUINN M D J, et al. Graphene Induces formation of pores that kill spherical and rod-shaped bacteria.[J]. ACS nano, 2015, 9(8): 8458-8467.
doi: 10.1021/acsnano.5b03368 pmid: 26166486
[12] LIU Shaobin, HU Ming, ZENG T H, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.[J]. Langmuir : The ACS Journal of Surfaces and Colloids, 2012, 28(33): 12364-12372.
doi: 10.1021/la3023908
[13] AKHAVAN O, GHADERI E, ESFANDIAR A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation[J]. The Journal of Physical Chemistry: B, 2011, 115(19) : 6279-6288.
doi: 10.1021/jp200686k
[14] TANG Jia, CHEN Qian, XU Ligeng, et al. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mecha-nisms.[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3867-3874.
[15] LIU Chongchong, XU Hui, WANG Lei, et al. Facile one-pot green synthesis and antibacterial activities of GO/Ag nanocomposites[J]. Acta Metallurgica Sinica(English Letters), 2017, 30(1): 36-44.
[16] YU Liang, ZHANG Yatao, ZHANG Bing, et al. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure[J]. Scientific Reports, 2014, 4(1): 814-820.
[17] JIANG Baojiang, TIAN Chungui, SONG Gang, et al. A novel Ag/graphene composite: facile fabrication and enhanced antibacterial properties[J]. Journal of Materials Science, 2013, 48(5): 1980-1985.
doi: 10.1007/s10853-012-6964-3
[18] OUYANG Yu, CAI Xiang, SHI Qingshan, et al. Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107: 107-114.
doi: 10.1016/j.colsurfb.2013.01.073 pmid: 23475058
[19] 孟凡池. 石墨烯负载银、铜复合材料的设计、制备及抗菌性能研究[D]. 沈阳: 辽宁大学, 2020:43-44.
MENG Fanchi. Design, preparation and antibacterial properties of graphene supported silver and copper composites[D]. Shenyang: Liaoning University, 2020:43-44.
[20] 常莺娜. 石墨烯基抗菌材料制备及其净水机理研究[D]. 长沙: 湖南大学, 2016:24-34.
CHANG Yingna. Preparation of graphene based antibacterial material and its water purification mechanism[D]. Changsha: Hunan University, 2016:24-34.
[21] 李欣竹, 张守臣, 宁桂玲, 等. 硼掺杂二氧化钛与石墨烯复合材料的制备及其抗菌性质[C]//2018(第3届)抗菌科学与技术论坛论文摘要集[C]. 2018(第3届)抗菌科学与技术论坛论文摘要集[C]. 北京:全国卫生产业企业管理协会抗菌产业分会, 2018: 227-228.
LI Xinzhu, ZHANG Shouchen, NING Guiling, et al. Preparation and antibacterial properties of boron doped titanium dioxide graphene composites[C]// Abstracts of 2018 (3rd) Antibacterial Science and Technology Forum. Beijing: Antibacterial Industry Branch of National Health Industry Enterprise Management Association, 2018: 227-228.
[22] THANGAVELU K, ANANTHA I G, KWANG-PILL L, et al. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids[J]. Carbon, 2012, 50(8): 2994-3000.
doi: 10.1016/j.carbon.2012.02.082
[23] 李珊珊, 万思康, 郭梦雅, 等. 石墨烯/ZnO纳米复合物的制备及其抗菌性能研究[J]. 化工新型材料, 2019, 47(2): 268-271.
LI Shanshan, WAN Sikang, GUO Mengya, et al. Preparation and antibacterial properties of graphene/ ZnO Nanocomposites[J]. New Chemical Materials, 2019, 47(2): 268-271.
[24] 谢谭芳. 壳聚糖氧化石墨烯复合材料的研究概况[J]. 广东化工, 2021, 48(9): 127-129.
XIE Tanfang. Research progress of chitosan graphene oxide composites[J]. Guangdong Chemical Industry, 2021, 48(9): 127-129.
[25] 程佳慧. 偶联化壳聚糖-氧化石墨烯复合凝胶球的抑菌性研究[J]. 食品安全导刊, 2020. DOI:10.16043/j.cnki.cfs.2020.24.089.
doi: 10.16043/j.cnki.cfs.2020.24.089
CHENG Jiahui. Study on antibacterial activity of coupling chitosan and graphene oxide composite gel spheres[J]. Food Safety Guide, 2020. DOI: 10.16043/j.cnki.cfs.2020.24.089.
doi: 10.16043/j.cnki.cfs.2020.24.089
[26] HEENA K, ERUM Z, MUHAMMAD A A, et al. Graphene oxide, chitosan and silver nanocomposite as a highly effective antibacterial agent against pathogenic strains[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 246-255.
doi: 10.1016/j.colsurfa.2018.06.052
[27] YE Xiaoli, FENG Jin, ZHANG Jingxian, et al. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modifi-cation[J]. Colloids and Surfaces B: Biointerfaces, 2017, 149: 322-329.
doi: S0927-7765(16)30720-2 pmid: 27792981
[28] LIU Tengfei, LIU Yuqing, LIU Menglong, et al. Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing[J]. Burns & Trauma, 2018, 6(1): 1-23.
[29] BU Danlin, ZHOU Yu, YANG Chang, et al. Preparation of quaternarized N-halamine-grafted graphene oxide nanocomposites and synergetic antibacterial properties[J]. Chinese Chemical Letters, 2021, 32(11): 3509-3513.
doi: 10.1016/j.cclet.2021.03.007
[30] LIU Haosong, LIU Xuyang, ZHAO Fangbo, et al. Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier[J]. Journal of Colloid And Interface Science, 2020, 562: 182-192.
doi: S0021-9797(19)31476-6 pmid: 31838354
[31] HAN Jin, FENG Yiping, LIU Zhixiong, et al. Degradable GO-Nanocomposite hydrogels with synergistic photothermal and antibacterial response[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2021.124018.
doi: 10.1016/j.polymer.2021.124018
[32] ZUO Mengdi, PAN Nengyu, REN Xuehong, et al. Antibacterial chitosan hybrid films with N-halamine-functionalized graphene oxide[J]. Nano, 2020. DOI: 10.1142/S1793292020500277.
doi: 10.1142/S1793292020500277
[33] PAN Nengyu, LIU Ying, FAN Xiaoyan, et al. Preparation and characterization of antibacterial graphene oxide functionalized with polymeric N-halamine[J]. Journal of Materials Science, 2017, 52(4): 1996-2006.
doi: 10.1007/s10853-016-0488-1
[34] PAN Nengyu, LI Zhiguang, REN Xuehong, et al. Antibacterial films with enhanced physical properties based on poly (vinyl alcohol) and halogen aminated-graphene oxide[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.48176.
doi: 10.1002/app.48176
[35] 张勇, 李桢. 石墨烯及氧化石墨烯在纺织领域的抗菌应用[J]. 棉纺织技术, 2020, 48(9): 75-79.
ZHANG Yong, LI Zhen. Antibacterial application of graphene and graphene oxide in textile field[J]. Cotton Textile Technology, 2020, 48(9): 75-79.
[36] HU Xinjun, LI Jiangong, BAI Yongxiao. Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning[J]. Materials Letters, 2017, 194: 224-226.
doi: 10.1016/j.matlet.2017.02.057
[37] 马君志, 曲丽君, 李昌垒, 等. 石墨烯粘胶纤维制备及性能研究[J]. 人造纤维, 2016, 46(6): 2-9,14.
MA Junzhi, QU Lijun, LI Changlei, et al. Preparation and properties of graphene viscose fiber[J]. Artificial Fiber, 2016, 46(6): 2-9,14.
[38] 钟丽华, 张何. 氧化石墨烯在纺织品领域的抗菌应用[J]. 包装工程, 2019, 40(23): 94-100.
ZHONG Lihua, ZHANG He. Antibacterial application of graphene oxide in textile field[J]. Packaging Engineering, 2019, 40(23): 94-100.
[39] FATEMEH Y, ESMAEIL S. A Simple method for the preparation of antibacterial cotton fabrics by coating graphene oxide nanosheets[J]. Fibers and Polymers, 2019, 20(6) : 1155-1160.
doi: 10.1007/s12221-019-8540-1
[40] KARTHIKEYAN K, UMASUTHAN N, RAJNEESH M, et al. Graphene oxide nanostructures modified multifunctional cotton fabrics[J]. Applied Nanoscience, 2012, 2(2): 119-126.
doi: 10.1007/s13204-011-0045-9
[1] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[2] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[3] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
[4] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[5] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165.
[6] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[7] 高雪, 李政, 巩继贤, 李秋瑾, 李凤艳, 张健飞. 新型纺织用生物基抗菌整理剂的研究进展[J]. 纺织学报, 2020, 41(02): 187-192.
[8] 张思 吴敏. 三聚氰胺纤维毡的制备与性能[J]. 纺织学报, 2017, 38(12): 65-68.
[9] 王佳 徐秀娟 马明波 周文龙. 天然棕色棉的抗菌性能[J]. 纺织学报, 2017, 38(03): 1-5.
[10] 刘海亮 肖长发 黄庆林 舒伟. 增强型中空纤维多孔膜研究进展[J]. 纺织学报, 2015, 36(09): 154-161.
[11] 梁银杏;孙宁. 杂环聚芳酰胺的研究进展[J]. 纺织学报, 2009, 30(07): 142-148.
[12] 刘今强;邵建中;张玲玲;周岚;俞思琴. 纳米材料在棉制品上的固着技术[J]. 纺织学报, 2006, 27(9): 5-8.
[13] 马建伟;刘伟;陈韶娟. 纳米功能锦纶的力学性能[J]. 纺织学报, 2006, 27(1): 62-64.
[14] 吴敏;程秀萍;葛明桥. 纳米添加剂对纺织浆料浆膜性能的影响[J]. 纺织学报, 2005, 26(4): 70-72.
[15] 张治国;尹红;陈志荣. 酸性染料常用匀染剂研究进展[J]. 纺织学报, 2005, 26(4): 134-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!